Process mining is rapidly growing in the industry. Consequently, privacy concerns regarding sensitive and private information included in event data, used by process mining algorithms, are becoming increasingly relevant. State-of-the-art research mainly focuses on providing privacy guarantees, e.g., differential privacy, for trace variants that are used by the main process mining techniques, e.g., process discovery. However, privacy preservation techniques for releasing trace variants still do not fulfill all the requirements of industry-scale usage. Moreover, providing privacy guarantees when there exists a high rate of infrequent trace variants is still a challenge. In this paper, we introduce TraVaG as a new approach for releasing differentially private trace variants based on \text{Generative Adversarial Networks} (GANs) that provides industry-scale benefits and enhances the level of privacy guarantees when there exists a high ratio of infrequent variants. Moreover, TraVaG overcomes shortcomings of conventional privacy preservation techniques such as bounding the length of variants and introducing fake variants. Experimental results on real-life event data show that our approach outperforms state-of-the-art techniques in terms of privacy guarantees, plain data utility preservation, and result utility preservation.
Federated learning (FL) enables participating parties to collaboratively build a global model with boosted utility without disclosing private data information. Appropriate protection mechanisms have to be adopted to fulfill the requirements in preserving \textit{privacy} and maintaining high model \textit{utility}. The nature of the widely-adopted protection mechanisms including \textit{Randomization Mechanism} and \textit{Compression Mechanism} is to protect privacy via distorting model parameter. We measure the utility via the gap between the original model parameter and the distorted model parameter. We want to identify under what general conditions privacy-preserving federated learning can achieve near-optimal utility via data generation and parameter distortion. To provide an avenue for achieving near-optimal utility, we present an upper bound for utility loss, which is measured using two main terms called variance-reduction and model parameter discrepancy separately. Our analysis inspires the design of appropriate protection parameters for the protection mechanisms to achieve near-optimal utility and meet the privacy requirements simultaneously. The main techniques for the protection mechanism include parameter distortion and data generation, which are generic and can be applied extensively. Furthermore, we provide an upper bound for the trade-off between privacy and utility, which together with the lower bound illustrated in NFL form the conditions for achieving optimal trade-off.
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation owing to its strong potential in capturing underlying data statistics while preserving data privacy. However, in cases of practical data heterogeneity among FL clients, existing FL frameworks still exhibit deficiency in capturing the overall feature properties of local client data that exhibit disparate distributions. In response, generative adversarial networks (GANs) have recently been exploited in FL to address data heterogeneity since GANs can be integrated for data regeneration without exposing original raw data. Despite some successes, existing GAN-related FL frameworks often incur heavy communication cost and also elicit other privacy concerns, which limit their applications in real scenarios. To this end, this work proposes a novel FL framework that requires only partial GAN model sharing. Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions across clients and to strengthen privacy preservation at reduced communication cost, especially over wireless networks. Our analysis demonstrates the convergence and privacy benefits of the proposed PS-FEdGAN framework. Through experimental results based on several well-known benchmark datasets, our proposed PS-FedGAN shows great promise to tackle FL under non-IID client data distributions, while securing data privacy and lowering communication overhead.
Learning on graphs is becoming prevalent in a wide range of applications including social networks, robotics, communication, medicine, etc. These datasets belonging to entities often contain critical private information. The utilization of data for graph learning applications is hampered by the growing privacy concerns from users on data sharing. Existing privacy-preserving methods pre-process the data to extract user-side features, and only these features are used for subsequent learning. Unfortunately, these methods are vulnerable to adversarial attacks to infer private attributes. We present a novel privacy-respecting framework for distributed graph learning and graph-based machine learning. In order to perform graph learning and other downstream tasks on the server side, this framework aims to learn features as well as distances without requiring actual features while preserving the original structural properties of the raw data. The proposed framework is quite generic and highly adaptable. We demonstrate the utility of the Euclidean space, but it can be applied with any existing method of distance approximation and graph learning for the relevant spaces. Through extensive experimentation on both synthetic and real datasets, we demonstrate the efficacy of the framework in terms of comparing the results obtained without data sharing to those obtained with data sharing as a benchmark. This is, to our knowledge, the first privacy-preserving distributed graph learning framework.
Foundation Models (FMs), such as BERT, GPT, ViT, and CLIP, have demonstrated remarkable success in a wide range of applications, driven by their ability to leverage vast amounts of data for pre-training. However, optimizing FMs often requires access to sensitive data, raising privacy concerns and limiting their applicability in certain domains. In this paper, we introduce the concept of Federated Foundation Models (FFMs), a novel approach that combines the benefits of FMs and Federated Learning (FL) to enable privacy-preserving and collaborative learning across multiple institutions. We discuss the potential benefits and challenges of integrating FL into the lifespan of FMs, covering pre-training, fine-tuning, and application. We further provide formal definitions of FFM tasks, including FFM pre-training, FFM fine-tuning, and federated prompt engineering, allowing for more personalized and context-aware models while maintaining data privacy. Moreover, we explore the possibility of continual/lifelong learning in FFMs, as increased computational power at the edge unlocks the potential for optimizing FMs using newly generated private data at edges. We present experiments and evaluations comparing the performance of FFMs to traditional FMs on various downstream tasks, demonstrating the effectiveness of our approach in preserving privacy, reducing overfitting, and improving model generalizability. The proposed Federated Foundation Models offer a flexible and scalable framework for training large language models in a privacy-preserving manner, paving the way for future advancements in both FM pre-training and federated learning.
Graph contrastive learning has emerged as a powerful tool for unsupervised graph representation learning. The key to the success of graph contrastive learning is to acquire high-quality positive and negative samples as contrasting pairs for the purpose of learning underlying structural semantics of the input graph. Recent works usually sample negative samples from the same training batch with the positive samples, or from an external irrelevant graph. However, a significant limitation lies in such strategies, which is the unavoidable problem of sampling false negative samples. In this paper, we propose a novel method to utilize \textbf{C}ounterfactual mechanism to generate artificial hard negative samples for \textbf{G}raph \textbf{C}ontrastive learning, namely \textbf{CGC}, which has a different perspective compared to those sampling-based strategies. We utilize counterfactual mechanism to produce hard negative samples, which ensures that the generated samples are similar to, but have labels that different from the positive sample. The proposed method achieves satisfying results on several datasets compared to some traditional unsupervised graph learning methods and some SOTA graph contrastive learning methods. We also conduct some supplementary experiments to give an extensive illustration of the proposed method, including the performances of CGC with different hard negative samples and evaluations for hard negative samples generated with different similarity measurements.
A number of deep models trained on high-quality and valuable images have been deployed in practical applications, which may pose a leakage risk of data privacy. Learning differentially private generative models can sidestep this challenge through indirect data access. However, such differentially private generative models learned by existing approaches can only generate images with a low-resolution of less than 128x128, hindering the widespread usage of generated images in downstream training. In this work, we propose learning differentially private probabilistic models (DPPM) to generate high-resolution images with differential privacy guarantee. In particular, we first train a model to fit the distribution of the training data and make it satisfy differential privacy by performing a randomized response mechanism during training process. Then we perform Hamiltonian dynamics sampling along with the differentially private movement direction predicted by the trained probabilistic model to obtain the privacy-preserving images. In this way, it is possible to apply these images to different downstream tasks while protecting private information. Notably, compared to other state-of-the-art differentially private generative approaches, our approach can generate images up to 256x256 with remarkable visual quality and data utility. Extensive experiments show the effectiveness of our approach.
Certified defenses against adversarial attacks offer formal guarantees on the robustness of a model, making them more reliable than empirical methods such as adversarial training, whose effectiveness is often later reduced by unseen attacks. Still, the limited certified robustness that is currently achievable has been a bottleneck for their practical adoption. Gowal et al. and Wang et al. have shown that generating additional training data using state-of-the-art diffusion models can considerably improve the robustness of adversarial training. In this work, we demonstrate that a similar approach can substantially improve deterministic certified defenses. In addition, we provide a list of recommendations to scale the robustness of certified training approaches. One of our main insights is that the generalization gap, i.e., the difference between the training and test accuracy of the original model, is a good predictor of the magnitude of the robustness improvement when using additional generated data. Our approach achieves state-of-the-art deterministic robustness certificates on CIFAR-10 for the $\ell_2$ ($\epsilon = 36/255$) and $\ell_\infty$ ($\epsilon = 8/255$) threat models, outperforming the previous best results by $+3.95\%$ and $+1.39\%$, respectively. Furthermore, we report similar improvements for CIFAR-100.
Robustness to adversarial perturbations is of paramount concern in modern machine learning. One of the state-of-the-art methods for training robust classifiers is adversarial training, which involves minimizing a supremum-based surrogate risk. The statistical consistency of surrogate risks is well understood in the context of standard machine learning, but not in the adversarial setting. In this paper, we characterize which supremum-based surrogates are consistent for distributions absolutely continuous with respect to Lebesgue measure in binary classification. Furthermore, we obtain quantitative bounds relating adversarial surrogate risks to the adversarial classification risk. Lastly, we discuss implications for the $\cH$-consistency of adversarial training.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
This work details CipherGAN, an architecture inspired by CycleGAN used for inferring the underlying cipher mapping given banks of unpaired ciphertext and plaintext. We demonstrate that CipherGAN is capable of cracking language data enciphered using shift and Vigenere ciphers to a high degree of fidelity and for vocabularies much larger than previously achieved. We present how CycleGAN can be made compatible with discrete data and train in a stable way. We then prove that the technique used in CipherGAN avoids the common problem of uninformative discrimination associated with GANs applied to discrete data.