亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work presents the cubature scheme for the fitting of spatio-temporal Poisson point processes. The methodology is implemented in the R Core Team (2024) package stopp (D'Angelo and Adelfio, 2023), published on the Comprehensive R Archive Network (CRAN) and available from //CRAN.R-project.org/package=stopp. Since the number of dummy points should be sufficient for an accurate estimate of the likelihood, numerical experiments are currently under development to give guidelines on this aspect.

相關內容

Linear structural vector autoregressive models can be identified statistically without imposing restrictions on the model if the shocks are mutually independent and at most one of them is Gaussian. We show that this result extends to structural threshold and smooth transition vector autoregressive models incorporating a time-varying impact matrix defined as a weighted sum of the impact matrices of the regimes. Our empirical application studies the effects of the climate policy uncertainty shock on the U.S. macroeconomy. In a structural logistic smooth transition vector autoregressive model consisting of two regimes, we find that a positive climate policy uncertainty shock decreases production in times of low economic policy uncertainty but slightly increases it in times of high economic policy uncertainty. The introduced methods are implemented to the accompanying R package sstvars.

The article introduces a method to learn dynamical systems that are governed by Euler--Lagrange equations from data. The method is based on Gaussian process regression and identifies continuous or discrete Lagrangians and is, therefore, structure preserving by design. A rigorous proof of convergence as the distance between observation data points converges to zero is provided. Next to convergence guarantees, the method allows for quantification of model uncertainty, which can provide a basis of adaptive sampling techniques. We provide efficient uncertainty quantification of any observable that is linear in the Lagrangian, including of Hamiltonian functions (energy) and symplectic structures, which is of interest in the context of system identification. The article overcomes major practical and theoretical difficulties related to the ill-posedness of the identification task of (discrete) Lagrangians through a careful design of geometric regularisation strategies and through an exploit of a relation to convex minimisation problems in reproducing kernel Hilbert spaces.

We propose a comprehensive framework for policy gradient methods tailored to continuous time reinforcement learning. This is based on the connection between stochastic control problems and randomised problems, enabling applications across various classes of Markovian continuous time control problems, beyond diffusion models, including e.g. regular, impulse and optimal stopping/switching problems. By utilizing change of measure in the control randomisation technique, we derive a new policy gradient representation for these randomised problems, featuring parametrised intensity policies. We further develop actor-critic algorithms specifically designed to address general Markovian stochastic control issues. Our framework is demonstrated through its application to optimal switching problems, with two numerical case studies in the energy sector focusing on real options.

We develop a novel deep learning technique, termed Deep Orthogonal Decomposition (DOD), for dimensionality reduction and reduced order modeling of parameter dependent partial differential equations. The approach consists in the construction of a deep neural network model that approximates the solution manifold through a continuously adaptive local basis. In contrast to global methods, such as Principal Orthogonal Decomposition (POD), the adaptivity allows the DOD to overcome the Kolmogorov barrier, making the approach applicable to a wide spectrum of parametric problems. Furthermore, due to its hybrid linear-nonlinear nature, the DOD can accommodate both intrusive and nonintrusive techniques, providing highly interpretable latent representations and tighter control on error propagation. For this reason, the proposed approach stands out as a valuable alternative to other nonlinear techniques, such as deep autoencoders. The methodology is discussed both theoretically and practically, evaluating its performances on problems featuring nonlinear PDEs, singularities, and parametrized geometries.

Bayesian sampling is an important task in statistics and machine learning. Over the past decade, many ensemble-type sampling methods have been proposed. In contrast to the classical Markov chain Monte Carlo methods, these new methods deploy a large number of interactive samples, and the communication between these samples is crucial in speeding up the convergence. To justify the validity of these sampling strategies, the concept of interacting particles naturally calls for the mean-field theory. The theory establishes a correspondence between particle interactions encoded in a set of coupled ODEs/SDEs and a PDE that characterizes the evolution of the underlying distribution. This bridges numerical algorithms with the PDE theory used to show convergence in time. Many mathematical machineries are developed to provide the mean-field analysis, and we showcase two such examples: The coupling method and the compactness argument built upon the martingale strategy. The former has been deployed to show the convergence of ensemble Kalman sampler and ensemble Kalman inversion, and the latter will be shown to be immensely powerful in proving the validity of the Vlasov-Boltzmann simulator.

We provide rigorous theoretical bounds for Anderson acceleration (AA) that allow for approximate calculations when applied to solve linear problems. We show that, when the approximate calculations satisfy the provided error bounds, the convergence of AA is maintained while the computational time could be reduced. We also provide computable heuristic quantities, guided by the theoretical error bounds, which can be used to automate the tuning of accuracy while performing approximate calculations. For linear problems, the use of heuristics to monitor the error introduced by approximate calculations, combined with the check on monotonicity of the residual, ensures the convergence of the numerical scheme within a prescribed residual tolerance. Motivated by the theoretical studies, we propose a reduced variant of AA, which consists in projecting the least-squares used to compute the Anderson mixing onto a subspace of reduced dimension. The dimensionality of this subspace adapts dynamically at each iteration as prescribed by the computable heuristic quantities. We numerically show and assess the performance of AA with approximate calculations on: (i) linear deterministic fixed-point iterations arising from the Richardson's scheme to solve linear systems with open-source benchmark matrices with various preconditioners and (ii) non-linear deterministic fixed-point iterations arising from non-linear time-dependent Boltzmann equations.

We study the data-driven selection of causal graphical models using constraint-based algorithms, which determine the existence or non-existence of edges (causal connections) in a graph based on testing a series of conditional independence hypotheses. In settings where the ultimate scientific goal is to use the selected graph to inform estimation of some causal effect of interest (e.g., by selecting a valid and sufficient set of adjustment variables), we argue that a "cautious" approach to graph selection should control the probability of falsely removing edges and prefer dense, rather than sparse, graphs. We propose a simple inversion of the usual conditional independence testing procedure: to remove an edge, test the null hypothesis of conditional association greater than some user-specified threshold, rather than the null of independence. This equivalence testing formulation to testing independence constraints leads to a procedure with desriable statistical properties and behaviors that better match the inferential goals of certain scientific studies, for example observational epidemiological studies that aim to estimate causal effects in the face of causal model uncertainty. We illustrate our approach on a data example from environmental epidemiology.

High-dimensional, higher-order tensor data are gaining prominence in a variety of fields, including but not limited to computer vision and network analysis. Tensor factor models, induced from noisy versions of tensor decompositions or factorizations, are natural potent instruments to study a collection of tensor-variate objects that may be dependent or independent. However, it is still in the early stage of developing statistical inferential theories for the estimation of various low-rank structures, which are customary to play the role of signals of tensor factor models. In this paper, we attempt to ``decode" the estimation of a higher-order tensor factor model by leveraging tensor matricization. Specifically, we recast it into mode-wise traditional high-dimensional vector/fiber factor models, enabling the deployment of conventional principal components analysis (PCA) for estimation. Demonstrated by the Tucker tensor factor model (TuTFaM), which is induced from the noisy version of the widely-used Tucker decomposition, we summarize that estimations on signal components are essentially mode-wise PCA techniques, and the involvement of projection and iteration will enhance the signal-to-noise ratio to various extent. We establish the inferential theory of the proposed estimators, conduct rich simulation experiments, and illustrate how the proposed estimations can work in tensor reconstruction, and clustering for independent video and dependent economic datasets, respectively.

Advanced Krylov subspace methods are investigated for the solution of large sparse linear systems arising from stiff adjoint-based aerodynamic shape optimization problems. A special attention is paid to the flexible inner-outer GMRES strategy combined with most relevant preconditioning and deflation techniques. The choice of this specific class of Krylov solvers for challenging problems is based on its outstanding convergence properties. Typically in our implementation the efficiency of the preconditioner is enhanced with a domain decomposition method with overlapping. However, maintaining the performance of the preconditioner may be challenging since scalability and efficiency of a preconditioning technique are properties often antagonistic to each other. In this paper we demonstrate how flexible inner-outer Krylov methods are able to overcome this critical issue. A numerical study is performed considering either a Finite Volume (FV), or a high-order Discontinuous Galerkin (DG) discretization which affect the arithmetic intensity and memory-bandwith of the algebraic operations. We consider test cases of transonic turbulent flows with RANS modelling over the two-dimensional supercritical OAT15A airfoil and the three-dimensional ONERA M6 wing. Benefits in terms of robustness and convergence compared to standard GMRES solvers are obtained. Strong scalability analysis shows satisfactory results. Based on these representative problems a discussion of the recommended numerical practices is proposed.

We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.

北京阿比特科技有限公司