This paper aims first to perform robust continuous analysis of a mixed nonlinear formulation for stress-assisted diffusion of a solute that interacts with an elastic material, and second to propose and analyse a virtual element formulation of the model problem. The two-way coupling mechanisms between the Herrmann formulation for linear elasticity and the reaction-diffusion equation (written in mixed form) consist of diffusion-induced active stress and stress-dependent diffusion. The two sub-problems are analysed using the extended Babu\v{s}ka--Brezzi--Braess theory for perturbed saddle-point problems. The well-posedness of the nonlinearly coupled system is established using a Banach fixed-point strategy under the smallness assumption on data. The virtual element formulations for the uncoupled sub-problems are proven uniquely solvable by a fixed-point argument in conjunction with appropriate projection operators. We derive the a priori error estimates, and test the accuracy and performance of the proposed method through computational simulations.
We propose a numerical algorithm for the computation of multi-marginal optimal transport (MMOT) problems involving general probability measures that are not necessarily discrete. By developing a relaxation scheme in which marginal constraints are replaced by finitely many linear constraints and by proving a specifically tailored duality result for this setting, we approximate the MMOT problem by a linear semi-infinite optimization problem. Moreover, we are able to recover a feasible and approximately optimal solution of the MMOT problem, and its sub-optimality can be controlled to be arbitrarily close to 0 under mild conditions. The developed relaxation scheme leads to a numerical algorithm which can compute a feasible approximate optimizer of the MMOT problem whose theoretical sub-optimality can be chosen to be arbitrarily small. Besides the approximate optimizer, the algorithm is also able to compute both an upper bound and a lower bound for the optimal value of the MMOT problem. The difference between the computed bounds provides an explicit sub-optimality bound for the computed approximate optimizer. We demonstrate the proposed algorithm in three numerical experiments involving an MMOT problem that stems from fluid dynamics, the Wasserstein barycenter problem, and a large-scale MMOT problem with 100 marginals. We observe that our algorithm is capable of computing high-quality solutions of these MMOT problems and the computed sub-optimality bounds are much less conservative than their theoretical upper bounds in all the experiments.
Confounding bias and selection bias are two significant challenges to the validity of conclusions drawn from applied causal inference. The latter can stem from informative missingness, such as in cases of attrition. We introduce the Sequential Adjustment Criteria (SAC), which extend available graphical conditions for recovering causal effects using sequential regressions, allowing for the inclusion of post-exposure and forbidden variables in the admissible adjustment sets. We propose an estimator for the recovered Average Treatment Effect (ATE) based on Targeted Minimum-Loss Estimation (TMLE), which enjoys multiple robustness under certain conditions. This approach ensures consistency even in scenarios where the Double Inverse Probability Weighting (DIPW) and the na\"ive plug-in sequential regressions approaches fall short. Through a simulation study, we assess the performance of the proposed estimator against alternative methods across different graph setups and model specification scenarios. As a motivating application, we examine the effect of pharmacological treatment for Attention-Deficit/Hyperactivity Disorder (ADHD) upon the scores obtained by diagnosed Norwegian schoolchildren in national tests using observational data ($n=9,352$). Our findings align with the accumulated clinical evidence, affirming a positive but small impact of medication on academic achievement.
The aim of this article is to present a hybrid finite element/finite difference method which is used for reconstructions of electromagnetic properties within a realistic breast phantom. This is done by studying the mentioned properties' (electric permittivity and conductivity in this case) representing coefficients in a constellation of Maxwell's equations. This information is valuable since these coefficient can reveal types of tissues within the breast, and in applications could be used to detect shapes and locations of tumours. Because of the ill-posed nature of this coefficient inverse problem, we approach it as an optimization problem by introducing the corresponding Tikhonov functional and in turn Lagrangian. These are then minimized by utilizing an interplay between finite element and finite difference methods for solutions of direct and adjoint problems, and thereafter by applying a conjugate gradient method to an adaptively refined mesh.
In this article, we propose and study a stochastic and relaxed preconditioned Douglas--Rachford splitting method to solve saddle-point problems that have separable dual variables. We prove the almost sure convergence of the iteration sequences in Hilbert spaces for a class of convex-concave and nonsmooth saddle-point problems. We also provide the sublinear convergence rate for the ergodic sequence concerning the expectation of the restricted primal-dual gap functions. Numerical experiments show the high efficiency of the proposed stochastic and relaxed preconditioned Douglas--Rachford splitting methods.
Finding vertex-to-vertex correspondences in real-world graphs is a challenging task with applications in a wide variety of domains. Structural matching based on graphs connectivities has attracted considerable attention, while the integration of all the other information stemming from vertices and edges attributes has been mostly left aside. Here we present the Graph Attributes and Structure Matching (GASM) algorithm, which provides high-quality solutions by integrating all the available information in a unified framework. Parameters quantifying the reliability of the attributes can tune how much the solutions should rely on the structure or on the attributes. We further show that even without attributes GASM consistently finds as-good-as or better solutions than state-of-the-art algorithms, with similar processing times.
Mediation analysis aims to identify and estimate the effect of an exposure on an outcome that is mediated through one or more intermediate variables. In the presence of multiple intermediate variables, two pertinent methodological questions arise: estimating mediated effects when mediators are correlated, and performing high-dimensional mediation analysis when the number of mediators exceeds the sample size. This paper presents a two-step procedure for high-dimensional mediation analysis. The first step selects a reduced number of candidate mediators using an ad-hoc lasso penalty. The second step applies a procedure we previously developed to estimate the mediated and direct effects, accounting for the correlation structure among the retained candidate mediators. We compare the performance of the proposed two-step procedure with state-of-the-art methods using simulated data. Additionally, we demonstrate its practical application by estimating the causal role of DNA methylation in the pathway between smoking and rheumatoid arthritis using real data.
We study the decidability and complexity of non-cooperative rational synthesis problem (abbreviated as NCRSP) for some classes of probabilistic strategies. We show that NCRSP for stationary strategies and Muller objectives is in 3-EXPTIME, and if we restrict the strategies of environment players to be positional, NCRSP becomes NEXPSPACE solvable. On the other hand, NCRSP_>, which is a variant of NCRSP, is shown to be undecidable even for pure finite-state strategies and terminal reachability objectives. Finally, we show that NCRSP becomes EXPTIME solvable if we restrict the memory of a strategy to be the most recently visited t vertices where t is linear in the size of the game.
To avoid ineffective collisions between the equilibrium states, the hybrid method with deviational particles (HDP) has been proposed to integrate the Fokker-Planck-Landau system, while leaving a new issue in sampling deviational particles from the high-dimensional source term. In this paper, we present an adaptive sampling (AS) strategy that first adaptively reconstructs a piecewise constant approximation of the source term based on sequential clustering via discrepancy estimation, and then samples deviational particles directly from the resulting adaptive piecewise constant function without rejection. The mixture discrepancy, which can be easily calculated thanks to its explicit analytical expression, is employed as a measure of uniformity instead of the star discrepancy the calculation of which is NP-hard. The resulting method, dubbed the HDP-AS method, runs approximately ten times faster than the HDP method while keeping the same accuracy in the Landau damping, two stream instability, bump on tail and Rosenbluth's test problem.
The main purpose of this paper is to design a local discontinuous Galerkin (LDG) method for the Benjamin-Ono equation. We analyze the stability and error estimates for the semi-discrete LDG scheme. We prove that the scheme is $L^2$-stable and it converges at a rate $\mathcal{O}(h^{k+1/2})$ for general nonlinear flux. Furthermore, we develop a fully discrete LDG scheme using the four-stage fourth order Runge-Kutta method and ensure the devised scheme is strongly stable in case of linear flux using two-step and three-step stability approach under an appropriate time step constraint. Numerical examples are provided to validate the efficiency and accuracy of the method.
This paper deals with nonlinear mechanics of an elevator brake system subjected to uncertainties. A deterministic model that relates the braking force with uncertain parameters is deduced from mechanical equilibrium conditions. In order to take into account parameters variabilities, a parametric probabilistic approach is employed. In this stochastic formalism, the uncertain parameters are modeled as random variables, with distributions specified by the maximum entropy principle. The uncertainties are propagated by the Monte Carlo method, which provides a detailed statistical characterization of the response. This work still considers the optimum design of the brake system, formulating and solving nonlinear optimization problems, with and without the uncertainties effects.