The least trimmed squares (LTS) is a reasonable formulation of robust regression whereas it suffers from high computational cost due to the nonconvexity and nonsmoothness of its objective function. The most frequently used FAST-LTS algorithm is particularly slow when a sparsity-inducing penalty such as the $\ell_1$ norm is added. This paper proposes a computationally inexpensive algorithm for the sparse LTS, which is based on the proximal gradient method with a reformulation technique. Proposed method is equipped with theoretical convergence preferred over existing methods. Numerical experiments show that our method efficiently yields small objective value.
Moist thermodynamics is a fundamental driver of atmospheric dynamics across all scales, making accurate modeling of these processes essential for reliable weather forecasts and climate change projections. However, atmospheric models often make a variety of inconsistent approximations in representing moist thermodynamics. These inconsistencies can introduce spurious sources and sinks of energy, potentially compromising the integrity of the models. Here, we present a thermodynamically consistent and structure preserving formulation of the moist compressible Euler equations. When discretised with a summation by parts method, our spatial discretisation conserves: mass, water, entropy, and energy. These properties are achieved by discretising a skew symmetric form of the moist compressible Euler equations, using entropy as a prognostic variable, and the summation-by-parts property of discrete derivative operators. Additionally, we derive a discontinuous Galerkin spectral element method with energy and tracer variance stable numerical fluxes, and experimentally verify our theoretical results through numerical simulations.
We propose a local discontinuous Galerkin (LDG) method for fractional Korteweg-de Vries equation involving the fractional Laplacian with exponent $\alpha\in (1,2)$ in one and two space dimensions. By decomposing the fractional Laplacian into a first order derivative and a fractional integral, we prove $L^2$-stability of the semi-discrete LDG scheme incorporating suitable interface and boundary fluxes. We analyze the error estimate by considering linear convection term and utilizing the estimate, we derive the error estimate for general nonlinear flux and demonstrate an order of convergence $\mathcal{O}(h^{k+1/2})$. Moreover, the stability and error analysis have been extended to multiple space dimensional case. Numerical illustrations are shown to demonstrate the efficiency of the scheme by obtaining an optimal order of convergence.
Eigenvalues of parameter-dependent quadratic eigenvalue problems form eigencurves. The critical points on these curves, where the derivative vanishes, are of practical interest. A particular example is found in the dispersion curves of elastic waveguides, where such points are called zero-group-velocity (ZGV) points. Recently, it was revealed that the problem of computing ZGV points can be modeled as a multiparameter eigenvalue problem (MEP), and several numerical methods were devised. Due to their complexity, these methods are feasible only for problems involving small matrices. In this paper, we improve the efficiency of these methods by exploiting the link to the Sylvester equation. This approach enables the computation of ZGV points for problems with much larger matrices, such as multi-layered plates and three-dimensional structures of complex cross-sections.
Positive spanning sets (PSSs) are families of vectors that span a given linear space through non-negative linear combinations. Despite certain classes of PSSs being well understood, a complete characterization of PSSs remains elusive. In this paper, we explore a relatively understudied relationship between positive spanning sets and strongly edge-connected digraphs, in that the former can be viewed as a generalization of the latter. We leverage this connection to define a decomposition structure for positive spanning sets inspired by the ear decomposition from digraph theory.
We study the problem of variable selection in convex nonparametric least squares (CNLS). Whereas the least absolute shrinkage and selection operator (Lasso) is a popular technique for least squares, its variable selection performance is unknown in CNLS problems. In this work, we investigate the performance of the Lasso estimator and find out it is usually unable to select variables efficiently. Exploiting the unique structure of the subgradients in CNLS, we develop a structured Lasso method by combining $\ell_1$-norm and $\ell_{\infty}$-norm. The relaxed version of the structured Lasso is proposed for achieving model sparsity and predictive performance simultaneously, where we can control the two effects--variable selection and model shrinkage--using separate tuning parameters. A Monte Carlo study is implemented to verify the finite sample performance of the proposed approaches. We also use real data from Swedish electricity distribution networks to illustrate the effects of the proposed variable selection techniques. The results from the simulation and application confirm that the proposed structured Lasso performs favorably, generally leading to sparser and more accurate predictive models, relative to the conventional Lasso methods in the literature.
Characteristic formulae give a complete logical description of the behaviour of processes modulo some chosen notion of behavioural semantics. They allow one to reduce equivalence or preorder checking to model checking, and are exactly the formulae in the modal logics characterizing classic behavioural equivalences and preorders for which model checking can be reduced to equivalence or preorder checking. This paper studies the complexity of determining whether a formula is characteristic for some finite, loop-free process in each of the logics providing modal characterizations of the simulation-based semantics in van Glabbeek's branching-time spectrum. Since characteristic formulae in each of those logics are exactly the consistent and prime ones, it presents complexity results for the satisfiability and primality problems, and investigates the boundary between modal logics for which those problems can be solved in polynomial time and those for which they become computationally hard. Amongst other contributions, this article also studies the complexity of constructing characteristic formulae in the modal logics characterizing simulation-based semantics, both when such formulae are presented in explicit form and via systems of equations.
The consensus problem in distributed computing involves a network of agents aiming to compute the average of their initial vectors through local communication, represented by an undirected graph. This paper focuses on the studying of this problem using an average-case analysis approach, particularly over regular graphs. Traditional algorithms for solving the consensus problem often rely on worst-case performance evaluation scenarios, which may not reflect typical performance in real-world applications. Instead, we apply average-case analysis, focusing on the expected spectral distribution of eigenvalues to obtain a more realistic view of performance. Key contributions include deriving the optimal method for consensus on regular graphs, showing its relation to the Heavy Ball method, analyzing its asymptotic convergence rate, and comparing it to various first-order methods through numerical experiments.
We study a deterministic particle scheme to solve a scalar balance equation with nonlocal interaction and nonlinear mobility used to model congested dynamics. The main novelty with respect to "Radici-Stra [SIAM J. Math. Anal. 55.3 (2023)]" is the presence of a source term; this causes the solutions to no longer be probability measures, thus requiring a suitable adaptation of the numerical scheme and of the estimates leading to compactness.
A little utilised but fundamental fact is that if one discretises a partial differential equation using a symmetry-adapted basis corresponding to so-called irreducible representations, the basic building blocks in representational theory, then the resulting linear system can be completely decoupled into smaller independent linear systems. That is, representation theory can be used to trivially parallelise the numerical solution of partial differential equations. This beautiful theory is introduced via a crash course in representation theory aimed at its practical utilisation, its connection with decomposing expansions in polynomials into different symmetry classes, and give examples of solving Schr\"odinger's equation on simple symmetric geometries like squares and cubes where there is as much as four-fold increase in the number of independent linear systems, each of a significantly smaller dimension than results from standard bases.
The susceptibility of timestepping algorithms to numerical instabilities is an important consideration when simulating partial differential equations (PDEs). Here we identify and analyze a pernicious numerical instability arising in pseudospectral simulations of nonlinear wave propagation resulting in finite-time blow-up. The blow-up time scale is independent of the spatial resolution and spectral basis but sensitive to the timestepping scheme and the timestep size. The instability appears in multi-step and multi-stage implicit-explicit (IMEX) timestepping schemes of different orders of accuracy and has been found to manifest in simulations of soliton solutions of the Korteweg-de Vries (KdV) equation and traveling wave solutions of a nonlinear generalized Klein-Gordon equation. Focusing on the case of KdV solitons, we show that modal predictions from linear stability theory are unable to explain the instability because the spurious growth from linear dispersion is small and nonlinear sources of error growth converge too slowly in the limit of small timestep size. We then develop a novel multi-scale asymptotic framework that captures the slow, nonlinear accumulation of timestepping errors. The framework allows the solution to vary with respect to multiple time scales related to the timestep size and thus recovers the instability as a function of a slow time scale dictated by the order of accuracy of the timestepping scheme. We show that this approach correctly describes our simulations of solitons by making accurate predictions of the blow-up time scale and transient features of the instability. Our work demonstrates that studies of long-time simulations of nonlinear waves should exercise caution when validating their timestepping schemes.