亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sparse matrix-vector multiplication (SpMV) is a fundamental operation in machine learning, scientific computing, and graph algorithms. In this paper, we investigate the space, time, and energy efficiency of SpMV using various compressed formats for large sparse matrices, focusing specifically on Boolean matrices and real-valued vectors. Through extensive analysis and experiments conducted on server and edge devices, we found that different matrix compression formats offer distinct trade-offs among space usage, execution time, and energy consumption. Notably, by employing the appropriate compressed format, we can reduce energy consumption by an order of magnitude on both server and single-board computers. Furthermore, our experiments indicate that while data parallelism can enhance execution speed and energy efficiency, achieving simultaneous time and energy efficiency presents partially distinct challenges. Specifically, we show that for certain compression schemes, the optimal degree of parallelism for time does not align with that for energy, thereby challenging prevailing assumptions about a straightforward linear correlation between execution time and energy consumption. Our results have significant implications for software engineers in all domains where SpMV operations are prevalent. They also suggest that similar studies exploring the trade-offs between time, space, and energy for other compressed data structures can substantially contribute to designing more energy-efficient software components.

相關內容

We introduce efficient differentially private (DP) algorithms for several linear algebraic tasks, including solving linear equalities over arbitrary fields, linear inequalities over the reals, and computing affine spans and convex hulls. As an application, we obtain efficient DP algorithms for learning halfspaces and affine subspaces. Our algorithms addressing equalities are strongly polynomial, whereas those addressing inequalities are weakly polynomial. Furthermore, this distinction is inevitable: no DP algorithm for linear programming can be strongly polynomial-time efficient.

AI model alignment is crucial due to inadvertent biases in training data and the underspecified machine learning pipeline, where models with excellent test metrics may not meet end-user requirements. While post-training alignment via human feedback shows promise, these methods are often limited to generative AI settings where humans can interpret and provide feedback on model outputs. In traditional non-generative settings with numerical or categorical outputs, detecting misalignment through single-sample outputs remains challenging, and enforcing alignment during training requires repeating costly training processes. In this paper we consider an alternative strategy. We propose interpreting model alignment through property testing, defining an aligned model $f$ as one belonging to a subset $\mathcal{P}$ of functions that exhibit specific desired behaviors. We focus on post-processing a pre-trained model $f$ to better align with $\mathcal{P}$ using conformal risk control. Specifically, we develop a general procedure for converting queries for testing a given property $\mathcal{P}$ to a collection of loss functions suitable for use in a conformal risk control algorithm. We prove a probabilistic guarantee that the resulting conformal interval around $f$ contains a function approximately satisfying $\mathcal{P}$. We exhibit applications of our methodology on a collection of supervised learning datasets for (shape-constrained) properties such as monotonicity and concavity. The general procedure is flexible and can be applied to a wide range of desired properties. Finally, we prove that pre-trained models will always require alignment techniques even as model sizes or training data increase, as long as the training data contains even small biases.

Scalarization is a general, parallizable technique that can be deployed in any multiobjective setting to reduce multiple objectives into one, yet some have dismissed this versatile approach because linear scalarizations cannot explore concave regions of the Pareto frontier. To that end, we aim to find simple non-linear scalarizations that provably explore a diverse set of $k$ objectives on the Pareto frontier, as measured by the dominated hypervolume. We show that hypervolume scalarizations with uniformly random weights achieves an optimal sublinear hypervolume regret bound of $O(T^{-1/k})$, with matching lower bounds that preclude any algorithm from doing better asymptotically. For the setting of multiobjective stochastic linear bandits, we utilize properties of hypervolume scalarizations to derive a novel non-Euclidean analysis to get regret bounds of $\tilde{O}( d T^{-1/2} + T^{-1/k})$, removing unnecessary $\text{poly}(k)$ dependencies. We support our theory with strong empirical performance of using non-linear scalarizations that outperforms both their linear counterparts and other standard multiobjective algorithms in a variety of natural settings.

We introduce the physically based neural bidirectional reflectance distribution function (PBNBRDF), a novel, continuous representation for material appearance based on neural fields. Our model accurately reconstructs real-world materials while uniquely enforcing physical properties for realistic BRDFs, specifically Helmholtz reciprocity via reparametrization and energy passivity via efficient analytical integration. We conduct a systematic analysis demonstrating the benefits of adhering to these physical laws on the visual quality of reconstructed materials. Additionally, we enhance the color accuracy of neural BRDFs by introducing chromaticity enforcement supervising the norms of RGB channels. Through both qualitative and quantitative experiments on multiple databases of measured real-world BRDFs, we show that adhering to these physical constraints enables neural fields to more faithfully and stably represent the original data and achieve higher rendering quality.

Identification of nonlinear dynamical systems is crucial across various fields, facilitating tasks such as control, prediction, optimization, and fault detection. Many applications require methods capable of handling complex systems while providing strong learning guarantees for safe and reliable performance. However, existing approaches often focus on simplified scenarios, such as deterministic models, known diffusion, discrete systems, one-dimensional dynamics, or systems constrained by strong structural assumptions such as linearity. This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled stochastic differential equations with non-uniform diffusion. We assume regularity of the coefficients within a Sobolev space, allowing for broad applicability to various dynamical systems in robotics, finance, climate modeling, and biology. Leveraging the Fokker-Planck equation, we split the estimation into two tasks: (a) estimating system dynamics for a finite set of controls, and (b) estimating coefficients that govern those dynamics. We provide strong theoretical guarantees, including finite-sample bounds for \(L^2\), \(L^\infty\), and risk metrics, with learning rates adaptive to coefficients' regularity, similar to those in nonparametric least-squares regression literature. The practical effectiveness of our approach is demonstrated through extensive numerical experiments. Our method is available as an open-source Python library.

We provide a convergence analysis of gradient descent for the problem of agnostically learning a single ReLU function with moderate bias under Gaussian distributions. Unlike prior work that studies the setting of zero bias, we consider the more challenging scenario when the bias of the ReLU function is non-zero. Our main result establishes that starting from random initialization, in a polynomial number of iterations gradient descent outputs, with high probability, a ReLU function that achieves an error that is within a constant factor of the optimal error of the best ReLU function with moderate bias. We also provide finite sample guarantees, and these techniques generalize to a broader class of marginal distributions beyond Gaussians.

The prevalence of vector similarity search in modern machine learning applications and the continuously changing nature of data processed by these applications necessitate efficient and effective index maintenance techniques for vector search indexes. Designed primarily for static workloads, existing vector search indexes degrade in search quality and performance as the underlying data is updated unless costly index reconstruction is performed. To address this, we introduce Ada-IVF, an incremental indexing methodology for Inverted File (IVF) indexes. Ada-IVF consists of 1) an adaptive maintenance policy that decides which index partitions are problematic for performance and should be repartitioned and 2) a local re-clustering mechanism that determines how to repartition them. Compared with state-of-the-art dynamic IVF index maintenance strategies, Ada-IVF achieves an average of 2x and up to 5x higher update throughput across a range of benchmark workloads.

Existing neural operator architectures face challenges when solving multiphysics problems with coupled partial differential equations (PDEs) due to complex geometries, interactions between physical variables, and the limited amounts of high-resolution training data. To address these issues, we propose Codomain Attention Neural Operator (CoDA-NO), which tokenizes functions along the codomain or channel space, enabling self-supervised learning or pretraining of multiple PDE systems. Specifically, we extend positional encoding, self-attention, and normalization layers to function spaces. CoDA-NO can learn representations of different PDE systems with a single model. We evaluate CoDA-NO's potential as a backbone for learning multiphysics PDEs over multiple systems by considering few-shot learning settings. On complex downstream tasks with limited data, such as fluid flow simulations, fluid-structure interactions, and Rayleigh-B\'enard convection, we found CoDA-NO to outperform existing methods by over 36%.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

北京阿比特科技有限公司