亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Univariate and multivariate general linear regression models, subject to linear inequality constraints, arise in many scientific applications. The linear inequality restrictions on model parameters are often available from phenomenological knowledge and motivated by machine learning applications of high-consequence engineering systems (Agrell, 2019; Veiga and Marrel, 2012). Some studies on the multiple linear models consider known linear combinations of the regression coefficient parameters restricted between upper and lower bounds. In the present paper, we consider both univariate and multivariate general linear models subjected to this kind of linear restrictions. So far, research on univariate cases based on Bayesian methods is all under the condition that the coefficient matrix of the linear restrictions is a square matrix of full rank. This condition is not, however, always feasible. Another difficulty arises at the estimation step by implementing the Gibbs algorithm, which exhibits, in most cases, slow convergence. This paper presents a Bayesian method to estimate the regression parameters when the matrix of the constraints providing the set of linear inequality restrictions undergoes no condition. For the multivariate case, our Bayesian method estimates the regression parameters when the number of the constrains is less than the number of the regression coefficients in each multiple linear models. We examine the efficiency of our Bayesian method through simulation studies for both univariate and multivariate regressions. After that, we illustrate that the convergence of our algorithm is relatively faster than the previous methods. Finally, we use our approach to analyze two real datasets.

相關內容

Partially linear additive models generalize linear ones since they model the relation between a response variable and covariates by assuming that some covariates have a linear relation with the response but each of the others enter through unknown univariate smooth functions. The harmful effect of outliers either in the residuals or in the covariates involved in the linear component has been described in the situation of partially linear models, that is, when only one nonparametric component is involved in the model. When dealing with additive components, the problem of providing reliable estimators when atypical data arise, is of practical importance motivating the need of robust procedures. Hence, we propose a family of robust estimators for partially linear additive models by combining $B-$splines with robust linear regression estimators. We obtain consistency results, rates of convergence and asymptotic normality for the linear components, under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposal with its classical counterpart under different models and contamination schemes. The numerical experiments show the advantage of the proposed methodology for finite samples. We also illustrate the usefulness of the proposed approach on a real data set.

We study full Bayesian procedures for high-dimensional linear regression. We adopt data-dependent empirical priors introduced in [1]. In their paper, these priors have nice posterior contraction properties and are easy to compute. Our paper extend their theoretical results to the case of unknown error variance . Under proper sparsity assumption, we achieve model selection consistency, posterior contraction rates as well as Bernstein von-Mises theorem by analyzing multivariate t-distribution.

We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE), with linear regression models. As the development of machine learning for causal inference, a wide range of large-scale models for causality are gaining attention. One problem is that suspicions have been raised that the large-scale models are prone to overfitting to observations with sample selection, hence the large models may not be suitable for causal prediction. In this study, to resolve the suspicious, we investigate on the validity of causal inference methods for overparameterized models, by applying the recent theory of benign overfitting (Bartlett et al., 2020). Specifically, we consider samples whose distribution switches depending on an assignment rule, and study the prediction of CATE with linear models whose dimension diverges to infinity. We focus on two methods: the T-learner, which based on a difference between separately constructed estimators with each treatment group, and the inverse probability weight (IPW)-learner, which solves another regression problem approximated by a propensity score. In both methods, the estimator consists of interpolators that fit the samples perfectly. As a result, we show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known. This difference stems from that the T-learner is unable to preserve eigenspaces of the covariances, which is necessary for benign overfitting in the overparameterized setting. Our result provides new insights into the usage of causal inference methods in the overparameterizated setting, in particular, doubly robust estimators.

Statistical analysis is increasingly confronted with complex data from general metric spaces, such as symmetric positive definite matrix-valued data and probability distribution functions. [47] and [17] establish a general paradigm of Fr\'echet regression with complex metric space valued responses and Euclidean predictors. However, their proposed local Fr\'echet regression approach involves nonparametric kernel smoothing and suffers from the curse of dimensionality. To address this issue, we in this paper propose a novel random forests weighted local Fr\'echet regression paradigm. The main mechanism of our approach relies on the adaptive kernels generated by random forests. Our first method utilizes these weights as the local average to solve the Fr\'echet mean, while the second method performs local linear Fr\'echet regression, making both methods locally adaptive. Our proposals significantly improve existing Fr\'echet regression methods. Based on the theory of infinite order U-processes and infinite order Mmn-estimator, we establish the consistency, rate of convergence, and asymptotic normality for our proposed random forests weighted Fr\'echet regression estimator, which covers the current large sample theory of random forests with Euclidean responses as a special case. Numerical studies show the superiority of our proposed two methods for Fr\'echet regression with several commonly encountered types of responses such as probability distribution functions, symmetric positive definite matrices, and sphere data. The practical merits of our proposals are also demonstrated through the application to the human mortality distribution data.

In this study, a longitudinal regression model for covariance matrix outcomes is introduced. The proposal considers a multilevel generalized linear model for regressing covariance matrices on (time-varying) predictors. This model simultaneously identifies covariate associated components from covariance matrices, estimates regression coefficients, and estimates the within-subject variation in the covariance matrices. Optimal estimators are proposed for both low-dimensional and high-dimensional cases by maximizing the (approximated) hierarchical likelihood function and are proved to be asymptotically consistent, where the proposed estimator is the most efficient under the low-dimensional case and achieves the uniformly minimum quadratic loss among all linear combinations of the identity matrix and the sample covariance matrix under the high-dimensional case. Through extensive simulation studies, the proposed approach achieves good performance in identifying the covariate related components and estimating the model parameters. Applying to a longitudinal resting-state fMRI dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the proposed approach identifies brain networks that demonstrate the difference between males and females at different disease stages. The findings are in line with existing knowledge of AD and the method improves the statistical power over the analysis of cross-sectional data.

We study regression adjustments with additional covariates in randomized experiments under covariate-adaptive randomizations (CARs) when subject compliance is imperfect. We develop a regression-adjusted local average treatment effect (LATE) estimator that is proven to improve efficiency in the estimation of LATEs under CARs. Our adjustments can be parametric in linear and nonlinear forms, nonparametric, and high-dimensional. Even when the adjustments are misspecified, our proposed estimator is still consistent and asymptotically normal, and their inference method still achieves the exact asymptotic size under the null. When the adjustments are correctly specified, our estimator achieves the minimum asymptotic variance. When the adjustments are parametrically misspecified, we construct a new estimator which is weakly more efficient than linearly and nonlinearly adjusted estimators, as well as the one without any adjustments. Simulation evidence and empirical application confirm efficiency gains achieved by regression adjustments relative to both the estimator without adjustment and the standard two-stage least squares estimator.

It is known that when the statistical models are singular, i.e., the Fisher information matrix at the true parameter is degenerate, the fixed step-size gradient descent algorithm takes polynomial number of steps in terms of the sample size $n$ to converge to a final statistical radius around the true parameter, which can be unsatisfactory for the application. To further improve that computational complexity, we consider the utilization of the second-order information in the design of optimization algorithms. Specifically, we study the normalized gradient descent (NormGD) algorithm for solving parameter estimation in parametric statistical models, which is a variant of gradient descent algorithm whose step size is scaled by the maximum eigenvalue of the Hessian matrix of the empirical loss function of statistical models. When the population loss function, i.e., the limit of the empirical loss function when $n$ goes to infinity, is homogeneous in all directions, we demonstrate that the NormGD iterates reach a final statistical radius around the true parameter after a logarithmic number of iterations in terms of $n$. Therefore, for fixed dimension $d$, the NormGD algorithm achieves the optimal overall computational complexity $\mathcal{O}(n)$ to reach the final statistical radius. This computational complexity is cheaper than that of the fixed step-size gradient descent algorithm, which is of the order $\mathcal{O}(n^{\tau})$ for some $\tau > 1$, to reach the same statistical radius. We illustrate our general theory under two statistical models: generalized linear models and mixture models, and experimental results support our prediction with general theory.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

Large margin nearest neighbor (LMNN) is a metric learner which optimizes the performance of the popular $k$NN classifier. However, its resulting metric relies on pre-selected target neighbors. In this paper, we address the feasibility of LMNN's optimization constraints regarding these target points, and introduce a mathematical measure to evaluate the size of the feasible region of the optimization problem. We enhance the optimization framework of LMNN by a weighting scheme which prefers data triplets which yield a larger feasible region. This increases the chances to obtain a good metric as the solution of LMNN's problem. We evaluate the performance of the resulting feasibility-based LMNN algorithm using synthetic and real datasets. The empirical results show an improved accuracy for different types of datasets in comparison to regular LMNN.

北京阿比特科技有限公司