While gradient based methods are ubiquitous in machine learning, selecting the right step size often requires "hyperparameter tuning". This is because backtracking procedures like Armijo's rule depend on quality evaluations in every step, which are not available in a stochastic context. Since optimization schemes can be motivated using Taylor approximations, we replace the Taylor approximation with the conditional expectation (the best $L^2$ estimator) and propose "Random Function Descent" (RFD). Under light assumptions common in Bayesian optimization, we prove that RFD is identical to gradient descent, but with calculable step sizes, even in a stochastic context. We beat untuned Adam in synthetic benchmarks. To close the performance gap to tuned Adam, we propose a heuristic extension competitive with tuned Adam.
Imitation learning from demonstrations (ILD) aims to alleviate numerous shortcomings of reinforcement learning through the use of demonstrations. However, in most real-world applications, expert action guidance is absent, making the use of ILD impossible. Instead, we consider imitation learning from observations (ILO), where no expert actions are provided, making it a significantly more challenging problem to address. Existing methods often employ on-policy learning, which is known to be sample-costly. This paper presents SEILO, a novel sample-efficient on-policy algorithm for ILO, that combines standard adversarial imitation learning with inverse dynamics modeling. This approach enables the agent to receive feedback from both the adversarial procedure and a behavior cloning loss. We empirically demonstrate that our proposed algorithm requires fewer interactions with the environment to achieve expert performance compared to other state-of-the-art on-policy ILO and ILD methods.
In privacy under continual observation we study how to release differentially private estimates based on a dataset that evolves over time. The problem of releasing private prefix sums of $x_1,x_2,x_3,\dots \in\{0,1\}$ (where the value of each $x_i$ is to be private) is particularly well-studied, and a generalized form is used in state-of-the-art methods for private stochastic gradient descent (SGD). The seminal binary mechanism privately releases the first $t$ prefix sums with noise of variance polylogarithmic in $t$. Recently, Henzinger et al. and Denisov et al. showed that it is possible to improve on the binary mechanism in two ways: The variance of the noise can be reduced by a (large) constant factor, and also made more even across time steps. However, their algorithms for generating the noise distribution are not as efficient as one would like in terms of computation time and (in particular) space. We address the efficiency problem by presenting a simple alternative to the binary mechanism in which 1) generating the noise takes constant average time per value, 2) the variance is reduced by a factor about 4 compared to the binary mechanism, and 3) the noise distribution at each step is identical. Empirically, a simple Python implementation of our approach outperforms the running time of the approach of Henzinger et al., as well as an attempt to improve their algorithm using high-performance algorithms for multiplication with Toeplitz matrices.
We introduce a Loss Discounting Framework for model and forecast combination which generalises and combines Bayesian model synthesis and generalized Bayes methodologies. We use a loss function to score the performance of different models and introduce a multilevel discounting scheme which allows a flexible specification of the dynamics of the model weights. This novel and simple model combination approach can be easily applied to large scale model averaging/selection, can handle unusual features such as sudden regime changes, and can be tailored to different forecasting problems. We compare our method to both established methodologies and state of the art methods for a number of macroeconomic forecasting examples. We find that the proposed method offers an attractive, computationally efficient alternative to the benchmark methodologies and often outperforms more complex techniques.
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing, with a focus on functionals that arise in causal inference. We study the case where probability distributions are not known a priori but need to be estimated from data. These estimated distributions lead to empirical Gateaux derivatives, and we study the relationships between empirical, numerical, and analytical Gateaux derivatives. Starting with a case study of the interventional mean (average potential outcome), we delineate the relationship between finite differences and the analytical Gateaux derivative. We then derive requirements on the rates of numerical approximation in perturbation and smoothing that preserve the statistical benefits of one-step adjustments, such as rate double robustness. We then study more complicated functionals such as dynamic treatment regimes, the linear-programming formulation for policy optimization in infinite-horizon Markov decision processes, and sensitivity analysis in causal inference. More broadly, we study optimization-based estimators, since this begets a class of estimands where identification via regression adjustment is straightforward but obtaining influence functions under minor variations thereof is not. The ability to approximate bias adjustments in the presence of arbitrary constraints illustrates the usefulness of constructive approaches for Gateaux derivatives. We also find that the statistical structure of the functional (rate double robustness) can permit less conservative rates for finite-difference approximation. This property, however, can be specific to particular functionals; e.g., it occurs for the average potential outcome (hence average treatment effect) but not the infinite-horizon MDP policy value.
We develop a re-weighted gradient descent technique for boosting the performance of deep neural networks. Our algorithm involves the importance weighting of data points during each optimization step. Our approach is inspired by distributionally robust optimization with $f$-divergences, which has been known to result in models with improved generalization guarantees. Our re-weighting scheme is simple, computationally efficient, and can be combined with any popular optimization algorithms such as SGD and Adam. Empirically, we demonstrate our approach's superiority on various tasks, including vanilla classification, classification with label imbalance, noisy labels, domain adaptation, and tabular representation learning. Notably, we obtain improvements of +0.7% and +1.44% over SOTA on DomainBed and Tabular benchmarks, respectively. Moreover, our algorithm boosts the performance of BERT on GLUE benchmarks by +1.94%, and ViT on ImageNet-1K by +0.9%. These results demonstrate the effectiveness of the proposed approach, indicating its potential for improving performance in diverse domains.
We consider linear random coefficient regression models, where the regressors are allowed to have a finite support. First, we investigate identifiability, and show that the means and the variances and covariances of the random coefficients are identified from the first two conditional moments of the response given the covariates if the support of the covariates, excluding the intercept, contains a Cartesian product with at least three points in each coordinate. We also discuss ientification of higher-order mixed moments, as well as partial identification in the presence of a binary regressor. Next we show the variable selection consistency of the adaptive LASSO for the variances and covariances of the random coefficients in finite and moderately high dimensions. This implies that the estimated covariance matrix will actually be positive semidefinite and hence a valid covariance matrix, in contrast to the estimate arising from a simple least squares fit. We illustrate the proposed method in a simulation study.
Pre-trained multi-modal vision-language models (VLMs) are becoming increasingly popular due to their exceptional performance on downstream vision applications, particularly in the few- and zero-shot settings. However, selecting the best-performing VLM for some downstream applications is non-trivial, as it is dataset and task-dependent. Meanwhile, the exhaustive evaluation of all available VLMs on a novel application is not only time and computationally demanding but also necessitates the collection of a labeled dataset for evaluation. As the number of open-source VLM variants increases, there is a need for an efficient model selection strategy that does not require access to a curated evaluation dataset. This paper proposes a novel task and benchmark for efficiently evaluating VLMs' zero-shot performance on downstream applications without access to the downstream task dataset. Specifically, we introduce a new task LOVM: Language-Only Vision Model Selection, where methods are expected to perform both model selection and performance prediction based solely on a text description of the desired downstream application. We then introduced an extensive LOVM benchmark consisting of ground-truth evaluations of 35 pre-trained VLMs and 23 datasets, where methods are expected to rank the pre-trained VLMs and predict their zero-shot performance.
Deep reinforcement learning algorithms typically act on the same set of actions. However, this is not sufficient for a wide range of real-world applications where different subsets are available at each step. In this thesis, we consider the problem of interval restrictions as they occur in pathfinding with dynamic obstacles. When actions that lead to collisions are avoided, the continuous action space is split into variable parts. Recent research learns with strong assumptions on the number of intervals, is limited to convex subsets, and the available actions are learned from the observations. Therefore, we propose two approaches that are independent of the state of the environment by extending parameterized reinforcement learning and ConstraintNet to handle an arbitrary number of intervals. We demonstrate their performance in an obstacle avoidance task and compare the methods to penalties, projection, replacement, as well as discrete and continuous masking from the literature. The results suggest that discrete masking of action-values is the only effective method when constraints did not emerge during training. When restrictions are learned, the decision between projection, masking, and our ConstraintNet modification seems to depend on the task at hand. We compare the results with varying complexity and give directions for future work.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.