Large Language Models (LLMs) are increasingly utilized for domain-specific tasks, yet integrating domain expertise into evaluating their outputs remains challenging. A common approach to evaluating LLMs is to use metrics, or criteria, which are assertions used to assess performance that help ensure that their outputs align with domain-specific standards. Previous efforts have involved developers, lay users, or the LLMs themselves in creating these criteria, however, evaluation particularly from a domain expertise perspective, remains understudied. This study explores how domain experts contribute to LLM evaluation by comparing their criteria with those generated by LLMs and lay users. We further investigate how the criteria-setting process evolves, analyzing changes between a priori and a posteriori stages. Our findings emphasize the importance of involving domain experts early in the evaluation process while utilizing complementary strengths of lay users and LLMs. We suggest implications for designing workflows that leverage these strengths at different evaluation stages.
Recent trends in Generative AI have emerged towards fine-tuning foundational large language models (LLMs) to create domain-specific LLMs for automation and chatbot-like applications. Specialized applications for analytics-heavy domains such as Financial report generation require specific writing styles that comprise compound and creative sentences with minimized hallucinations. In this work, we explore the self-corrective auto-regressive qualities of LLMs to learn creativity in writing styles with minimal prompting. We propose a novel two-stage fine-tuning (FT) strategy wherein in the first stage public domain financial reports are used to train for writing styles while allowing the LLM to hallucinate. In the second stage the examples of hallucinations are manually corrected and further used to fine-tune the LLM. The finally trained LLM learns to generate specific financial report sections using minimal instructions and tabular data inputs while ensuring low fine-tuning costs. Our proposed two-stage fine-tuning boosts the accuracy of financial questions answering by two-folds while reducing hallucinations by over 50%. Also, the fine-tuned model has lower perplexity, improved ROUGE, TER and BLEU scores, higher creativity and knowledge density with lower uncertainty and cross entropy than base LLMs. Thus, the proposed framework can be generalized to train creativity in LLMs by first allowing them to hallucinate.
Most current domain adaptation methods address either covariate shift or label shift, but are not applicable where they occur simultaneously and are confounded with each other. Domain adaptation approaches which do account for such confounding are designed to adapt covariates to optimally predict a particular label whose shift is confounded with covariate shift. In this paper, we instead seek to achieve general-purpose data backwards compatibility. This would allow the adapted covariates to be used for a variety of downstream problems, including on pre-existing prediction models and on data analytics tasks. To do this we consider a modification of generalized label shift (GLS), which we call confounded shift. We present a novel framework for this problem, based on minimizing the expected divergence between the source and target conditional distributions, conditioning on possible confounders. Within this framework, we provide concrete implementations using the Gaussian reverse Kullback-Leibler divergence and the maximum mean discrepancy. Finally, we demonstrate our approach on synthetic and real datasets.
Data availability across domains often follows a long-tail distribution: a few domains have abundant data, while most face dat . a scarcity. This imbalance poses challenges in training language models uniformly across all domains. In our study, we focus on multilingual settings, where data sizes vary significantly between high- and low-resource languages. Common strategies to address this include upsampling low-resource languages (Temperature Sampling) or upweighting their loss (Scalarization). Although often considered equivalent, this assumption has not been proven, which motivates our study. Through both theoretical and empirical analysis, we identify the conditions under which these approaches are equivalent and when they diverge. Specifically, we demonstrate that these two methods are equivalent under full gradient descent, but this equivalence breaks down with stochastic gradient descent. Empirically, we observe that Temperature Sampling converges more quickly but is prone to overfitting. We argue that this faster convergence is likely due to the lower variance in gradient estimations, as shown theoretically. Based on these insights, we propose Cooldown, a strategy that reduces sampling temperature during training, accelerating convergence without overfitting to low-resource languages. Our method is competitive with existing data re-weighting and offers computational efficiency.
Transformers have demonstrated remarkable in-context learning capabilities across various domains, including statistical learning tasks. While previous work has shown that transformers can implement common learning algorithms, the adversarial robustness of these learned algorithms remains unexplored. This work investigates the vulnerability of in-context learning in transformers to \textit{hijacking attacks} focusing on the setting of linear regression tasks. Hijacking attacks are prompt-manipulation attacks in which the adversary's goal is to manipulate the prompt to force the transformer to generate a specific output. We first prove that single-layer linear transformers, known to implement gradient descent in-context, are non-robust and can be manipulated to output arbitrary predictions by perturbing a single example in the in-context training set. While our experiments show these attacks succeed on linear transformers, we find they do not transfer to more complex transformers with GPT-2 architectures. Nonetheless, we show that these transformers can be hijacked using gradient-based adversarial attacks. We then demonstrate that adversarial training enhances transformers' robustness against hijacking attacks, even when just applied during finetuning. Additionally, we find that in some settings, adversarial training against a weaker attack model can lead to robustness to a stronger attack model. Lastly, we investigate the transferability of hijacking attacks across transformers of varying scales and initialization seeds, as well as between transformers and ordinary least squares (OLS). We find that while attacks transfer effectively between small-scale transformers, they show poor transferability in other scenarios (small-to-large scale, large-to-large scale, and between transformers and OLS).
The wider application of end-to-end learning methods to embodied decision-making domains remains bottlenecked by their reliance on a superabundance of training data representative of the target domain. Meta-reinforcement learning (meta-RL) approaches abandon the aim of zero-shot generalization--the goal of standard reinforcement learning (RL)--in favor of few-shot adaptation, and thus hold promise for bridging larger generalization gaps. While learning this meta-level adaptive behavior still requires substantial data, efficient environment simulators approaching real-world complexity are growing in prevalence. Even so, hand-designing sufficiently diverse and numerous simulated training tasks for these complex domains is prohibitively labor-intensive. Domain randomization (DR) and procedural generation (PG), offered as solutions to this problem, require simulators to possess carefully-defined parameters which directly translate to meaningful task diversity--a similarly prohibitive assumption. In this work, we present DIVA, an evolutionary approach for generating diverse training tasks in such complex, open-ended simulators. Like unsupervised environment design (UED) methods, DIVA can be applied to arbitrary parameterizations, but can additionally incorporate realistically-available domain knowledge--thus inheriting the flexibility and generality of UED, and the supervised structure embedded in well-designed simulators exploited by DR and PG. Our empirical results showcase DIVA's unique ability to overcome complex parameterizations and successfully train adaptive agent behavior, far outperforming competitive baselines from prior literature. These findings highlight the potential of such semi-supervised environment design (SSED) approaches, of which DIVA is the first humble constituent, to enable training in realistic simulated domains, and produce more robust and capable adaptive agents.
Large Language Models (LLMs) have significantly impacted numerous domains, including Software Engineering (SE). Many recent publications have explored LLMs applied to various SE tasks and applications. Nevertheless, a comprehensive understanding of the application, effects, and possible limitations of LLMs on SE is still in its early stages. To bridge this gap, we conducted a systematic literature review on the intersection of LLMs and SE, with a particular focus on understanding how LLMs can be exploited in SE to optimize processes and outcomes. We collect and analyze a total of 229 research papers from 2017 to 2023 to answer four key research questions (RQs). In RQ1, we categorize and provide a comparative analysis of different LLMs that have been employed in SE tasks, characterising their distinctive features and uses. In RQ2, we analyse the methods used in data collection, preprocessing, and application highlighting the role of robust, well-curated datasets for successful LLM for SE implementation. RQ3 investigates the strategies employed to optimize and evaluate the performance of LLMs in SE, as well as the common techniques related to prompt optimization. Finally, RQ4 examines the specific SE tasks where LLMs have shown success to date, illustrating their practical contributions to the field. From the answers to these RQs, we discuss the current state-of-the-art and trends, identifying gaps in existing research, and flagging promising areas for future study.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.