Recent advances have led to the availability of many pre-trained language models (PLMs); however, a question that remains is how much data is truly needed to fine-tune PLMs for downstream tasks? In this work, we introduce DEFT, a data-efficient fine-tuning framework that leverages unsupervised core-set selection to minimize the amount of data needed to fine-tune PLMs for downstream tasks. We demonstrate the efficacy of our DEFT framework in the context of text-editing LMs, and compare to the state-of-the art text-editing model, CoEDIT (Raheja et al., 2023). Our quantitative and qualitative results demonstrate that DEFT models are just as accurate as CoEDIT while being finetuned on ~70% less data.
Recent advances in image and video creation, especially AI-based image synthesis, have led to the production of numerous visual scenes that exhibit a high level of abstractness and diversity. Consequently, Visual Storytelling (VST), a task that involves generating meaningful and coherent narratives from a collection of images, has become even more challenging and is increasingly desired beyond real-world imagery. While existing VST techniques, which typically use autoregressive decoders, have made significant progress, they suffer from low inference speed and are not well-suited for synthetic scenes. To this end, we propose a novel diffusion-based system DiffuVST, which models the generation of a series of visual descriptions as a single conditional denoising process. The stochastic and non-autoregressive nature of DiffuVST at inference time allows it to generate highly diverse narratives more efficiently. In addition, DiffuVST features a unique design with bi-directional text history guidance and multimodal adapter modules, which effectively improve inter-sentence coherence and image-to-text fidelity. Extensive experiments on the story generation task covering four fictional visual-story datasets demonstrate the superiority of DiffuVST over traditional autoregressive models in terms of both text quality and inference speed.
Recent advances in multimodal learning has resulted in powerful vision-language models, whose representations are generalizable across a variety of downstream tasks. Recently, their generalization ability has been further extended by incorporating trainable prompts, borrowed from the natural language processing literature. While such prompt learning techniques have shown impressive results, we identify that these prompts are trained based on global image features which limits itself in two aspects: First, by using global features, these prompts could be focusing less on the discriminative foreground image, resulting in poor generalization to various out-of-distribution test cases. Second, existing work weights all prompts equally whereas intuitively, prompts should be reweighed according to the semantics of the image. We address these as part of our proposed Contextual Prompt Learning (CoPL) framework, capable of aligning the prompts to the localized features of the image. Our key innovations over earlier works include using local image features as part of the prompt learning process, and more crucially, learning to weight these prompts based on local features that are appropriate for the task at hand. This gives us dynamic prompts that are both aligned to local image features as well as aware of local contextual relationships. Our extensive set of experiments on a variety of standard and few-shot datasets show that our method produces substantially improved performance when compared to the current state of the art methods. We also demonstrate both few-shot and out-of-distribution performance to establish the utility of learning dynamic prompts that are aligned to local image features.
The fairness of Natural Language Processing (NLP) models has emerged as a crucial concern. Information theory indicates that to achieve fairness, a model should not be able to predict sensitive variables, such as gender, ethnicity, and age. However, information related to these variables often appears implicitly in language, posing a challenge in identifying and mitigating biases effectively. To tackle this issue, we present a novel approach that operates at the embedding level of an NLP model, independent of the specific architecture. Our method leverages insights from recent advances in XAI techniques and employs an embedding transformation to eliminate implicit information from a selected variable. By directly manipulating the embeddings in the final layer, our approach enables a seamless integration into existing models without requiring significant modifications or retraining. In evaluation, we show that the proposed post-hoc approach significantly reduces gender-related associations in NLP models while preserving the overall performance and functionality of the models. An implementation of our method is available: //github.com/fanny-jourdan/TaCo
Large language models (LLMs), like ChatGPT, have greatly simplified text generation tasks. However, they have also raised concerns about privacy risks such as data leakage and unauthorized data collection. Existing solutions for privacy-preserving inference face practical challenges related to computation time and communication costs. In this paper, we propose InferDPT, the first practical framework for the privacy-preserving Inference of black-box LLMs, implementing Differential Privacy in Text generation. InferDPT comprises two key modules: the "perturbation module" utilizes the exponential mechanism to generate a perturbed prompt, facilitating privacy-preserving inference with black-box LLMs, and the "extraction module", inspired by knowledge distillation and retrieval-augmented generation, extracts coherent and consistent text from the perturbed generation result, ensuring successful text generation completion. To address privacy concerns related to previous exponential mechanisms' susceptibility to embedding revision attacks, we introduce RANTEXT, a novel differential privacy mechanism integrated into the perturbation module of InferDPT, which introduces the concept of "RANdom adjacency" for TEXT perturbation within the prompt. Experimental results across three datasets demonstrate that the text generation quality of InferDPT is comparable to that of non-private GPT-4, and RANTEXT surpasses existing state-of-the-art mechanisms, namely, SANTEXT+ and CUSTEXT+ in the trade-off between privacy and utility. Even with an privacy parameter epsilon value of 6.0, RANTEXT achieves an average privacy protection rate exceeding 90% against embedding revision attacks, which is 0.58 times higher than that of SANTEXT+ and 3.35 times higher than that of CUSTEXT+.
Generative Large Language Models (LLMs), such as ChatGPT, offer interactive APIs that can answer common questions at a human-expert level. However, these models often give inaccurate or incorrect responses when faced with questions requiring domain-specific or professional-specific knowledge not covered in their training corpus. Furthermore, many state-of-the-art LLMs are not open-source, making it challenging to inject knowledge with model APIs only. In this work, we introduce KnowGPT, a black-box knowledge injection framework for LLMs in question answering. KnowGPT leverages deep reinforcement learning (RL) to extract relevant knowledge from Knowledge Graphs (KGs) and use Multi-Armed Bandit (MAB) to construct the most suitable prompt for each question. Our extensive experiments on three benchmark datasets showcase that KnowGPT significantly enhances the existing methods. Notably, KnowGPT achieves an average improvement of 23.7% over ChatGPT and an average improvement of 2.9% over GPT-4. Additionally, KnowGPT attains a 91.6% accuracy on the OpenbookQA official leaderboard, which is comparable to human-level performance.
Emotion recognition in conversations (ERC) is a rapidly evolving task within the natural language processing community, which aims to detect the emotions expressed by speakers during a conversation. Recently, a growing number of ERC methods have focused on leveraging supervised contrastive learning (SCL) to enhance the robustness and generalizability of learned features. However, current SCL-based approaches in ERC are impeded by the constraint of large batch sizes and the lack of compatibility with most existing ERC models. To address these challenges, we propose an efficient and model-agnostic SCL framework named Supervised Sample-Label Contrastive Learning with Soft-HGR Maximal Correlation (SSLCL), which eliminates the need for a large batch size and can be seamlessly integrated with existing ERC models without introducing any model-specific assumptions. Specifically, we introduce a novel perspective on utilizing label representations by projecting discrete labels into dense embeddings through a shallow multilayer perceptron, and formulate the training objective to maximize the similarity between sample features and their corresponding ground-truth label embeddings, while minimizing the similarity between sample features and label embeddings of disparate classes. Moreover, we innovatively adopt the Soft-HGR maximal correlation as a measure of similarity between sample features and label embeddings, leading to significant performance improvements over conventional similarity measures. Additionally, multimodal cues of utterances are effectively leveraged by SSLCL as data augmentations to boost model performances. Extensive experiments on two ERC benchmark datasets, IEMOCAP and MELD, demonstrate the compatibility and superiority of our proposed SSLCL framework compared to existing state-of-the-art SCL methods. Our code is available at \url{//github.com/TaoShi1998/SSLCL}.
The pruning objective has recently extended beyond accuracy and sparsity to robustness in language models. Despite this, existing methods struggle to enhance robustness against adversarial attacks when continually increasing model sparsity and require a retraining process. As humans step into the era of large language models, these issues become increasingly prominent. This paper proposes that the robustness of language models is proportional to the extent of pre-trained knowledge they encompass. Accordingly, we introduce a post-training pruning strategy designed to faithfully replicate the embedding space and feature space of dense language models, aiming to conserve more pre-trained knowledge during the pruning process. In this setup, each layer's reconstruction error not only originates from itself but also includes cumulative error from preceding layers, followed by an adaptive rectification. Compared to other state-of-art baselines, our approach demonstrates a superior balance between accuracy, sparsity, robustness, and pruning cost with BERT on datasets SST2, IMDB, and AGNews, marking a significant stride towards robust pruning in language models.
With recent advancements in large language models, methods like chain-of-thought prompting to elicit reasoning chains have been shown to improve results on reasoning tasks. However, tasks that require multiple steps of reasoning still pose significant challenges to state-of-the-art models. Drawing inspiration from the beam search algorithm, we propose PathFinder, a tree-search-based reasoning path generation approach. It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding, enabled by varying sampling methods and parameters. Using constrained reasoning, PathFinder integrates novel quality constraints, pruning, and exploration methods to enhance the efficiency and the quality of generation. Moreover, it includes scoring and ranking features to improve candidate selection. Our approach outperforms competitive baselines on three complex arithmetic and commonsense reasoning tasks by 6% on average. Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.