There is a growing literature on design-based methods to estimate average treatment effects (ATEs) for randomized controlled trials (RCTs) for full sample analyses. This article extends these methods to estimate ATEs for discrete subgroups defined by pre-treatment variables, with an application to an RCT testing subgroup effects for a school voucher experiment in New York City. We consider ratio estimators for subgroup effects using regression methods, allowing for model covariates to improve precision, and prove a finite population central limit theorem. We discuss extensions to blocked and clustered RCT designs, and to other common estimators with random treatment-control sample sizes (or weights): post-stratification estimators, weighted estimators that adjust for data nonresponse, and estimators for Bernoulli trials. We also develop simple variance estimators that share features with robust estimators. Simulations show that the design-based subgroup estimators yield confidence interval coverage near nominal levels, even for small subgroups.
Generalized spatial modulation (GSM) is a novel multiple-antenna technique offering flexibility among spectral efficiency, energy efficiency, and the cost of RF chains. In this paper, a novel class of sequence sets, called enhanced cross Zcomplementary set (E-CZCS), is proposed for efficient training sequence design in broadband GSM systems. Specifically, an E-CZCS consists of multiple CZCSs possessing front-end and tail-end zero-correlation zones (ZCZs), whereby any two distinct CZCSs have a tail-end ZCZ when a novel type of cross-channel aperiodic correlation sums is considered. The theoretical upper bound on the ZCZ width is first derived, upon which optimal E-CZCSs with flexible parameters are constructed. For optimal channel estimation over frequency-selective channels, we introduce and evaluate a novel GSM training framework employing the proposed E-CZCSs.
Liesel is a new probabilistic programming framework developed with the aim of supporting research on Bayesian inference based on Markov chain Monte Carlo (MCMC) simulations in general and semi-parametric regression specifications in particular. Its three main components are (i) an R interface (RLiesel) for the configuration of an initial semi-parametric regression model, (ii) a graph-based model building library, where the initial model graph can be manipulated to incorporate new research ideas, and (iii) an MCMC library for designing modular inference algorithms combining multiple types of well-tested and possibly customized MCMC kernels. The graph builder as well as the MCMC library are implemented in Python, relying on JAX as a numerical computing library, and can therefore benefit from the latest machine learning technology such as automatic differentiation, just-in-time (JIT) compilation, and the use of high-performance computing devices such as tensor processing units (TPUs). Liesel provides all required tools for efficient and reliable statistical research on complex models and estimation algorithms. Its modular design allows users to expand the model library and inference algorithms, offering the flexibility and customization options to tailor the software to any specific research needs.
We present ReLU-QP, a GPU-accelerated solver for quadratic programs (QPs) that is capable of solving high-dimensional control problems at real-time rates. ReLU-QP is derived by exactly reformulating the Alternating Direction Method of Multipliers (ADMM) algorithm for solving QPs as a deep, weight-tied neural network with rectified linear unit (ReLU) activations. This reformulation enables the deployment of ReLU-QP on GPUs using standard machine-learning toolboxes. We evaluate the performance of ReLU-QP across three model-predictive control (MPC) benchmarks: stabilizing random linear dynamical systems with control limits, balancing an Atlas humanoid robot on a single foot, and tracking whole-body reference trajectories on a quadruped equipped with a six-degree-of-freedom arm. These benchmarks indicate that ReLU-QP is competitive with state-of-the-art CPU-based solvers for small-to-medium-scale problems and offers order-of-magnitude speed improvements for larger-scale problems.
Spectral submanifolds (SSMs) have emerged as accurate and predictive model reduction tools for dynamical systems defined either by equations or data sets. While finite-elements (FE) models belong to the equation-based class of problems, their implementations in commercial solvers do not generally provide information on the nonlinearities required for the analytical construction of SSMs. Here, we overcome this limitation by developing a data-driven construction of SSM-reduced models from a small number of unforced FE simulations. We then use these models to predict the forced response of the FE model without performing any costly forced simulation. This approach yields accurate forced response predictions even in the presence of internal resonances or quasi-periodic forcing, as we illustrate on several FE models. Our examples range from simple structures, such as beams and shells, to more complex geometries, such as a micro-resonator model containing more than a million degrees of freedom. In the latter case, our algorithm predicts accurate forced response curves in a small fraction of the time it takes to verify just a few points on those curves by simulating the full forced-response.
Text-to-image (T2I) models have recently experienced rapid development, achieving astonishing performance in terms of fidelity and textual alignment capabilities. However, given a long paragraph (up to 512 words), these generation models still struggle to achieve strong alignment and are unable to generate images depicting complex scenes. In this paper, we introduce an information-enriched diffusion model for paragraph-to-image generation task, termed ParaDiffusion, which delves into the transference of the extensive semantic comprehension capabilities of large language models to the task of image generation. At its core is using a large language model (e.g., Llama V2) to encode long-form text, followed by fine-tuning with LORA to alignthe text-image feature spaces in the generation task. To facilitate the training of long-text semantic alignment, we also curated a high-quality paragraph-image pair dataset, namely ParaImage. This dataset contains a small amount of high-quality, meticulously annotated data, and a large-scale synthetic dataset with long text descriptions being generated using a vision-language model. Experiments demonstrate that ParaDiffusion outperforms state-of-the-art models (SD XL, DeepFloyd IF) on ViLG-300 and ParaPrompts, achieving up to 15% and 45% human voting rate improvements for visual appeal and text faithfulness, respectively. The code and dataset will be released to foster community research on long-text alignment.
We propose a robust transceiver design for a covert integrated sensing and communications (ISAC) system with imperfect channel state information (CSI). Considering both bounded and probabilistic CSI error models, we formulate worst-case and outage-constrained robust optimization problems of joint trasceiver beamforming and radar waveform design to balance the radar performance of multiple targets while ensuring communications performance and covertness of the system. The optimization problems are challenging due to the non-convexity arising from the semi-infinite constraints (SICs) and the coupled transceiver variables. In an effort to tackle the former difficulty, S-procedure and Bernstein-type inequality are introduced for converting the SICs into finite convex linear matrix inequalities (LMIs) and second-order cone constraints. A robust alternating optimization framework referred to alternating double-checking is developed for decoupling the transceiver design problem into feasibility-checking transmitter- and receiver-side subproblems, transforming the rank-one constraints into a set of LMIs, and verifying the feasibility of beamforming by invoking the matrix-lifting scheme. Numerical results are provided to demonstrate the effectiveness and robustness of the proposed algorithm in improving the performance of covert ISAC systems.
Traffic steering (TS) is a promising approach to support various service requirements and enhance transmission reliability by distributing network traffic loads to appropriate base stations (BSs). In conventional cell-centric TS strategies, BSs make TS decisions for all user equipment (UEs) in a centralized manner, which focuses more on the overall performance of the whole cell, disregarding specific requirements of individual UE. The flourishing machine learning technologies and evolving UE-centric 5G network architecture have prompted the emergence of new TS technologies. In this paper, we propose a knowledge transfer and federated learning-enabled UE-centric (KT-FLUC) TS framework for highly dynamic 5G radio access networks (RAN). Specifically, first, we propose an attention-weighted group federated learning scheme. It enables intelligent UEs to make TS decisions autonomously using local models and observations, and a global model is defined to coordinate local TS decisions and share experiences among UEs. Secondly, considering the individual UE's limited computation and energy resources, a growing and pruning-based model compression method is introduced, mitigating the computation burden of UEs and reducing the communication overhead of federated learning. In addition, we propose a Q-value-based knowledge transfer method to initialize newcomer UEs, achieving a jump start for their training efficiency. Finally, the simulations show that our proposed KT-FLUC algorithm can effectively improve the service quality, achieving 65\% and 38\% lower delay and 52% and 57% higher throughput compared with cell-based TS and other UE-centric TS strategies, respectively.
Computational Fluid Dynamics (CFD) is used in the design and optimization of gas turbines and many other industrial/ scientific applications. However, the practical use is often limited by the high computational cost, and the accurate resolution of near-wall flow is a significant contributor to this cost. Machine learning (ML) and other data-driven methods can complement existing wall models. Nevertheless, training these models is bottlenecked by the large computational effort and memory footprint demanded by back-propagation. Recent work has presented alternatives for computing gradients of neural networks where a separate forward and backward sweep is not needed and storage of intermediate results between sweeps is not required because an unbiased estimator for the gradient is computed in a single forward sweep. In this paper, we discuss the application of this approach for training a subgrid wall model that could potentially be used as a surrogate in wall-bounded flow CFD simulations to reduce the computational overhead while preserving predictive accuracy.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.