亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multilingual large language models (MLLMs) are jointly trained on data from many different languages such that representation of individual languages can benefit from other languages' data. Impressive performance on zero-shot cross-lingual transfer shows that these models are capable of exploiting data from other languages. Yet, it remains unclear to what extent, and under which conditions, languages rely on each other's data. In this study, we use TracIn (Pruthi et al., 2020), a training data attribution (TDA) method, to retrieve the most influential training samples seen during multilingual fine-tuning for a particular test language. This allows us to analyse cross-lingual sharing mechanisms of MLLMs from a new perspective. While previous work studied cross-lingual sharing at the level of model parameters, we present the first approach to study cross-lingual sharing at the data level. We find that MLLMs rely on data from multiple languages from the early stages of fine-tuning and that this reliance gradually increases as fine-tuning progresses. We further study how different fine-tuning languages influence model performance on a given test language and find that they can both reinforce and complement the knowledge acquired from data of the test language itself.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · UML · Analysis · ChatGPT · Notability ·
2024 年 7 月 1 日

Complementing natural language (NL) requirements with graphical models can improve stakeholders' communication and provide directions for system design. However, creating models from requirements involves manual effort. The advent of generative large language models (LLMs), ChatGPT being a notable example, offers promising avenues for automated assistance in model generation. This paper investigates the capability of ChatGPT to generate a specific type of model, i.e., UML sequence diagrams, from NL requirements. We conduct a qualitative study in which we examine the sequence diagrams generated by ChatGPT for 28 requirements documents of various types and from different domains. Observations from the analysis of the generated diagrams have systematically been captured through evaluation logs, and categorized through thematic analysis. Our results indicate that, although the models generally conform to the standard and exhibit a reasonable level of understandability, their completeness and correctness with respect to the specified requirements often present challenges. This issue is particularly pronounced in the presence of requirements smells, such as ambiguity and inconsistency. The insights derived from this study can influence the practical utilization of LLMs in the RE process, and open the door to novel RE-specific prompting strategies targeting effective model generation.

Pre-trained large language models (LLMs) have powerful capabilities for generating creative natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper illustrates the parallels between LLMs and EAs, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. By examining these parallels, we analyze existing interdisciplinary research, with a specific focus on evolutionary fine-tuning and LLM-enhanced EAs. Drawing from these insights, valuable future directions are presented for advancing the integration of LLMs and EAs, while highlighting key challenges along the way. These parallels not only reveal the evolution mechanism behind LLMs but also facilitate the development of evolved artificial agents that approach or surpass biological organisms.

Multimodal large language models (MLLMs) have shown impressive success across modalities such as image, video, and audio in a variety of understanding and generation tasks. However, current MLLMs are surprisingly poor at understanding webpage screenshots and generating their corresponding HTML code. To address this problem, we propose Web2Code, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs. For dataset construction, we leverage pretrained LLMs to enhance existing webpage-to-code datasets as well as generate a diverse pool of new webpages rendered into images. Specifically, the inputs are webpage images and instructions, while the responses are the webpage's HTML code. We further include diverse natural language QA pairs about the webpage content in the responses to enable a more comprehensive understanding of the web content. To evaluate model performance in these tasks, we develop an evaluation framework for testing MLLMs' abilities in webpage understanding and web-to-code generation. Extensive experiments show that our proposed dataset is beneficial not only to our proposed tasks but also in the general visual domain, while previous datasets result in worse performance. We hope our work will contribute to the development of general MLLMs suitable for web-based content generation and task automation. Our data and code will be available at //github.com/MBZUAI-LLM/web2code.

We explore multi-step reasoning in vision-language models (VLMs). The problem is challenging, as reasoning data consisting of multiple steps of visual and language processing are barely available. To overcome the challenge, we first introduce a least-to-most visual reasoning paradigm, which interleaves steps of decomposing a question into sub-questions and invoking external tools for resolving sub-questions. Based on the paradigm, we further propose a novel data synthesis approach that can automatically create questions and multi-step reasoning paths for an image in a bottom-up manner. Our approach divides the complex synthesis task into a few simple sub-tasks, and (almost entirely) relies on open-sourced models to accomplish the sub-tasks. Therefore, the entire synthesis process is reproducible and cost-efficient, and the synthesized data is quality guaranteed. With the approach, we construct $50$k visual reasoning examples. Then, we develop a visual reasoner through supervised fine-tuning, which is capable of generally enhancing the reasoning abilities of a wide range of existing VLMs in a plug-and-play fashion. Extensive experiments indicate that the visual reasoner can consistently and significantly improve four VLMs on four VQA benchmarks. Our code and dataset are available at //github.com/steven-ccq/VisualReasoner.

Weakly Supervised Semantic Segmentation (WSSS) employs weak supervision, such as image-level labels, to train the segmentation model. Despite the impressive achievement in recent WSSS methods, we identify that introducing weak labels with high mean Intersection of Union (mIoU) does not guarantee high segmentation performance. Existing studies have emphasized the importance of prioritizing precision and reducing noise to improve overall performance. In the same vein, we propose ORANDNet, an advanced ensemble approach tailored for WSSS. ORANDNet combines Class Activation Maps (CAMs) from two different classifiers to increase the precision of pseudo-masks (PMs). To further mitigate small noise in the PMs, we incorporate curriculum learning. This involves training the segmentation model initially with pairs of smaller-sized images and corresponding PMs, gradually transitioning to the original-sized pairs. By combining the original CAMs of ResNet-50 and ViT, we significantly improve the segmentation performance over the single-best model and the naive ensemble model, respectively. We further extend our ensemble method to CAMs from AMN (ResNet-like) and MCTformer (ViT-like) models, achieving performance benefits in advanced WSSS models. It highlights the potential of our ORANDNet as a final add-on module for WSSS models.

Group decision-making (GDM) characterized by complexity and uncertainty is an essential part of various life scenarios. Most existing researches lack tools to fuse information quickly and interpret decision results for partially formed decisions. This limitation is particularly noticeable when there is a need to improve the efficiency of GDM. To address this issue, a novel multi-level sequential three-way decision for group decision-making (S3W-GDM) method is constructed from the perspective of granular computing. This method simultaneously considers the vagueness, hesitation, and variation of GDM problems under double hierarchy hesitant fuzzy linguistic term sets (DHHFLTS) environment. First, for fusing information efficiently, a novel multi-level expert information fusion method is proposed, and the concepts of expert decision table and the extraction/aggregation of decision-leveled information based on the multi-level granularity are defined. Second, the neighborhood theory, outranking relation and regret theory (RT) are utilized to redesign the calculations of conditional probability and relative loss function. Then, the granular structure of DHHFLTS based on the sequential three-way decision (S3WD) is defined to improve the decision-making efficiency, and the decision-making strategy and interpretation of each decision-level are proposed. Furthermore, the algorithm of S3W-GDM is given. Finally, an illustrative example of diagnosis is presented, and the comparative and sensitivity analysis with other methods are performed to verify the efficiency and rationality of the proposed method.

Large language models have been flourishing in the natural language processing (NLP) domain, and their potential for recommendation has been paid much attention to. Despite the intelligence shown by the recommendation-oriented finetuned models, LLMs struggle to fully understand the user behavior patterns due to their innate weakness in interpreting numerical features and the overhead for long context, where the temporal relations among user behaviors, subtle quantitative signals among different ratings, and various side features of items are not well explored. Existing works only fine-tune a sole LLM on given text data without introducing that important information to it, leaving these problems unsolved. In this paper, we propose ELCoRec to Enhance Language understanding with CoPropagation of numerical and categorical features for Recommendation. Concretely, we propose to inject the preference understanding capability into LLM via a GAT expert model where the user preference is better encoded by parallelly propagating the temporal relations, and rating signals as well as various side information of historical items. The parallel propagation mechanism could stabilize heterogeneous features and offer an informative user preference encoding, which is then injected into the language models via soft prompting at the cost of a single token embedding. To further obtain the user's recent interests, we proposed a novel Recent interaction Augmented Prompt (RAP) template. Experiment results over three datasets against strong baselines validate the effectiveness of ELCoRec. The code is available at //anonymous.4open.science/r/CIKM_Code_Repo-E6F5/README.md.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.

北京阿比特科技有限公司