We introduce a novel minimal order hybrid Discontinuous Galerkin (HDG) and a novel mass conserving mixed stress (MCS) method for the approximation of incompressible flows. For this we employ the $H(\operatorname{div})$-conforming linear Brezzi-Douglas-Marini space and the lowest order Raviart-Thomas space for the approximation of the velocity and the vorticity, respectively. Our methods are based on the physically correct diffusive flux $-\nu \varepsilon(u)$ and provide exactly divergence-free discrete velocity solutions, optimal (pressure robust) error estimates and a minimal number of coupling degrees of freedom. For the stability analysis we introduce a new Korn-like inequality for vector-valued element-wise $H^1$ and normal continuous functions. Numerical examples conclude the work where the theoretical findings are validated and the novel methods are compared in terms of condition numbers with respect to discrete stability parameters.
In this paper we study parametric TraceFEM and parametric SurfaceFEM (SFEM) discretizations of a surface Stokes problem. These methods are applied both to the Stokes problem in velocity-pressure formulation and in stream function formulation. A class of higher order methods is presented in a unified framework. Numerical efficiency aspects of the two formulations are discussed and a systematic comparison of TraceFEM and SFEM is given. A benchmark problem is introduced in which a scalar reference quantity is defined and numerically determined.
This paper applies a discontinuous Galerkin finite element method to the Kelvin-Voigt viscoelastic fluid motion equations when the forcing function is in $L^\infty({\bf L}^2)$-space. Optimal a priori error estimates in $L^\infty({\bf L}^2)$-norm for the velocity and in $L^\infty(L^2)$-norm for the pressure approximations for the semi-discrete discontinuous Galerkin method are derived here. The main ingredients for establishing the error estimates are the standard elliptic duality argument and a modified version of the Sobolev-Stokes operator defined on appropriate broken Sobolev spaces. Further, under the smallness assumption on the data, it has been proved that these estimates are valid uniformly in time. Then, a first-order accurate backward Euler method is employed to discretize the semi-discrete discontinuous Galerkin Kelvin-Voigt formulation completely. The fully discrete optimal error estimates for the velocity and pressure are established. Finally, using the numerical experiments, theoretical results are verified. It is worth highlighting here that the error results in this article for the discontinuous Galerkin method applied to the Kelvin-Voigt model using finite element analysis are the first attempt in this direction.
In this work, we consider fracture propagation in nearly incompressible and (fully) incompressible materials using a phase-field formulation. We use a mixed form of the elasticity equation to overcome volume locking effects and develop a robust, nonlinear and linear solver scheme and preconditioner for the resulting system. The coupled variational inequality system, which is solved monolithically, consists of three unknowns: displacements, pressure, and phase-field. Nonlinearities due to coupling, constitutive laws, and crack irreversibility are solved using a combined Newton algorithm for the nonlinearities in the partial differential equation and employing a primal-dual active set strategy for the crack irreverrsibility constraint. The linear system in each Newton step is solved iteratively with a flexible generalized minimal residual method (GMRES). The key contribution of this work is the development of a problem-specific preconditioner that leverages the saddle-point structure of the displacement and pressure variable. Four numerical examples in pure solids and pressure-driven fractures are conducted on uniformly and locally refined meshes to investigate the robustness of the solver concerning the Poisson ratio as well as the discretization and regularization parameters.
A stabilized finite element method is introduced for the simulation of time-periodic creeping flows, such as those found in the cardiorespiratory systems. The new technique, which is formulated in the frequency rather than time domain, strictly uses real arithmetics and permits the use of similar shape functions for pressure and velocity for ease of implementation. It involves the addition of the Laplacian of pressure to the continuity equation with a complex-valued stabilization parameter that is derived systematically from the momentum equation. The numerical experiments show the excellent accuracy and robustness of the proposed method in simulating flows in complex and canonical geometries for a wide range of conditions. The present method significantly outperforms a traditional solver in terms of both computational cost and scalability, which lowers the overall solution turnover time by several orders of magnitude.
In this paper, both semidiscrete and fully discrete finite element methods are analyzed for the penalized two-dimensional unsteady Navier-Stokes equations with nonsmooth initial data. First order backward Euler method is applied for the time discretization, whereas conforming finite element method is used for the spatial discretization. Optimal $L^2$ error estimates for the semidiscrete as well as the fully discrete approximations of the velocity and of the pressure are derived for realistically assumed conditions on the data. The main ingredient in the proof is the appropriate exploitation of the inverse of the penalized Stokes operator, negative norm estimates and time weighted estimates. Numerical examples are discussed at the end which conform our theoretical results.
A singularly perturbed parabolic problem of convection-diffusion type with a discontinuous initial condition is examined. An analytic function is identified which matches the discontinuity in the initial condition and also satisfies the homogenous parabolic differential equation associated with the problem. The difference between this analytical function and the solution of the parabolic problem is approximated numerically, using an upwind finite difference operator combined with an appropriate layer-adapted mesh. The numerical method is shown to be parameter-uniform. Numerical results are presented to illustrate the theoretical error bounds established in the paper.
A singularly perturbed parabolic problem of convection-diffusion type with a discontinuous initial condition is examined. A particular complimentary error function is identified which matches the discontinuity in the initial condition. The difference between this analytical function and the solution of the parabolic problem is approximated numerically. A co-ordinate transformation is used so that a layer-adapted mesh can be aligned to the interior layer present in the solution. Numerical analysis is presented for the associated numerical method, which establishes that the numerical method is a parameter-uniform numerical method. Numerical results are presented to illustrate the pointwise error bounds established in the paper.
We consider an elliptic linear-quadratic parameter estimation problem with a finite number of parameters. A novel a priori bound for the parameter error is proved and, based on this bound, an adaptive finite element method driven by an a posteriori error estimator is presented. Unlike prior results in the literature, our estimator, which is composed of standard energy error residual estimators for the state equation and suitable co-state problems, reflects the faster convergence of the parameter error compared to the (co)-state variables. We show optimal convergence rates of our method; in particular and unlike prior works, we prove that the estimator decreases with a rate that is the sum of the best approximation rates of the state and co-state variables. Experiments confirm that our method matches the convergence rate of the parameter error.
Bisimulation metrics define a distance measure between states of a Markov decision process (MDP) based on a comparison of reward sequences. Due to this property they provide theoretical guarantees in value function approximation. In this work we first prove that bisimulation metrics can be defined via any $p$-Wasserstein metric for $p\geq 1$. Then we describe an approximate policy iteration (API) procedure that uses $\epsilon$-aggregation with $\pi$-bisimulation and prove performance bounds for continuous state spaces. We bound the difference between $\pi$-bisimulation metrics in terms of the change in the policies themselves. Based on these theoretical results, we design an API($\alpha$) procedure that employs conservative policy updates and enjoys better performance bounds than the naive API approach. In addition, we propose a novel trust region approach which circumvents the requirement to explicitly solve a constrained optimization problem. Finally, we provide experimental evidence of improved stability compared to non-conservative alternatives in simulated continuous control.
Computations of incompressible flows with velocity boundary conditions require solution of a Poisson equation for pressure with all Neumann boundary conditions. Discretization of such a Poisson equation results in a rank-deficient matrix of coefficients. When a non-conservative discretization method such as finite difference, finite element, or spectral scheme is used, such a matrix also generates an inconsistency which makes the residuals in the iterative solution to saturate at a threshold level that depends on the spatial resolution and order of the discretization scheme. In this paper, we examine inconsistency for a high-order meshless discretization scheme suitable for solving the equations on a complex domain. The high order meshless method uses polyharmonic spline radial basis functions (PHS-RBF) with appended polynomials to interpolate scattered data and constructs the discrete equations by collocation. The PHS-RBF provides the flexibility to vary the order of discretization by increasing the degree of the appended polynomial. In this study, we examine the convergence of the inconsistency for different spatial resolutions and for different degrees of the appended polynomials by solving the Poisson equation for a manufactured solution as well as the Navier-Stokes equations for several fluid flows. We observe that the inconsistency decreases faster than the error in the final solution, and eventually becomes vanishing small at sufficient spatial resolution. The rate of convergence of the inconsistency is observed to be similar or better than the rate of convergence of the discretization errors. This beneficial observation makes it unnecessary to regularize the Poisson equation by fixing either the mean pressure or pressure at an arbitrary point. A simple point solver such as the SOR is seen to be well-convergent, although it can be further accelerated using multilevel methods.