亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The surge in interest and application of large language models (LLMs) has sparked a drive to fine-tune these models to suit specific applications, such as finance and medical science. However, concerns regarding data privacy have emerged, especially when multiple stakeholders aim to collaboratively enhance LLMs using sensitive data. In this scenario, federated learning becomes a natural choice, allowing decentralized fine-tuning without exposing raw data to central servers. Motivated by this, we investigate how data privacy can be ensured in LLM fine-tuning through practical federated learning approaches, enabling secure contributions from multiple parties to enhance LLMs. Yet, challenges arise: 1) despite avoiding raw data exposure, there is a risk of inferring sensitive information from model outputs, and 2) federated learning for LLMs incurs notable communication overhead. To address these challenges, this article introduces DP-LoRA, a novel federated learning algorithm tailored for LLMs. DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training. Moreover, DP-LoRA optimizes communication efficiency via low-rank adaptation, minimizing the transmission of updated weights during distributed training. The experimental results across medical, financial, and general datasets using various LLMs demonstrate that DP-LoRA effectively ensures strict privacy constraints while minimizing communication overhead.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 分解的 · Performer · Tensor · 估計/估計量 ·
2024 年 7 月 12 日

Spotforming is a target-speaker extraction technique that uses multiple microphone arrays. This method applies beamforming (BF) to each microphone array, and the common components among the BF outputs are estimated as the target source. This study proposes a new common component extraction method based on nonnegative tensor factorization (NTF) for higher model interpretability and more robust spotforming against hyperparameters. Moreover, attractor-based regularization was introduced to facilitate the automatic selection of optimal target bases in the NTF. Experimental results show that the proposed method performs better than conventional methods in spotforming performance and also shows some characteristics suitable for practical use.

We propose masked particle modeling (MPM) as a self-supervised method for learning generic, transferable, and reusable representations on unordered sets of inputs for use in high energy physics (HEP) scientific data. This work provides a novel scheme to perform masked modeling based pre-training to learn permutation invariant functions on sets. More generally, this work provides a step towards building large foundation models for HEP that can be generically pre-trained with self-supervised learning and later fine-tuned for a variety of down-stream tasks. In MPM, particles in a set are masked and the training objective is to recover their identity, as defined by a discretized token representation of a pre-trained vector quantized variational autoencoder. We study the efficacy of the method in samples of high energy jets at collider physics experiments, including studies on the impact of discretization, permutation invariance, and ordering. We also study the fine-tuning capability of the model, showing that it can be adapted to tasks such as supervised and weakly supervised jet classification, and that the model can transfer efficiently with small fine-tuning data sets to new classes and new data domains.

The emergence of large language models (LLMs) has revolutionized the way we interact with graphs, leading to a new paradigm called GraphLLM. Despite the rapid development of GraphLLM methods in recent years, the progress and understanding of this field remain unclear due to the lack of a benchmark with consistent experimental protocols. To bridge this gap, we introduce GLBench, the first comprehensive benchmark for evaluating GraphLLM methods in both supervised and zero-shot scenarios. GLBench provides a fair and thorough evaluation of different categories of GraphLLM methods, along with traditional baselines such as graph neural networks. Through extensive experiments on a collection of real-world datasets with consistent data processing and splitting strategies, we have uncovered several key findings. Firstly, GraphLLM methods outperform traditional baselines in supervised settings, with LLM-as-enhancers showing the most robust performance. However, using LLMs as predictors is less effective and often leads to uncontrollable output issues. We also notice that no clear scaling laws exist for current GraphLLM methods. In addition, both structures and semantics are crucial for effective zero-shot transfer, and our proposed simple baseline can even outperform several models tailored for zero-shot scenarios. The data and code of the benchmark can be found at //github.com/NineAbyss/GLBench.

We introduce a novel application of large language models (LLMs) in developing a virtual counselor capable of conducting motivational interviewing (MI) for alcohol use counseling. Access to effective counseling remains limited, particularly for substance abuse, and virtual agents offer a promising solution by leveraging LLM capabilities to simulate nuanced communication techniques inherent in MI. Our approach combines prompt engineering and integration into a user-friendly virtual platform to facilitate realistic, empathetic interactions. We evaluate the effectiveness of our virtual agent through a series of studies focusing on replicating MI techniques and human counselor dialog. Initial findings suggest that our LLM-powered virtual agent matches human counselors' empathetic and adaptive conversational skills, presenting a significant step forward in virtual health counseling and providing insights into the design and implementation of LLM-based therapeutic interactions.

The use of self-supervised learning (SSL) to train pathology foundation models has increased substantially in the past few years. Notably, several models trained on large quantities of clinical data have been made publicly available in recent months. This will significantly enhance scientific research in computational pathology and help bridge the gap between research and clinical deployment. With the increase in availability of public foundation models of different sizes, trained using different algorithms on different datasets, it becomes important to establish a benchmark to compare the performance of such models on a variety of clinically relevant tasks spanning multiple organs and diseases. In this work, we present a collection of pathology datasets comprising clinical slides associated with clinically relevant endpoints including cancer diagnoses and a variety of biomarkers generated during standard hospital operation from two medical centers. We leverage these datasets to systematically assess the performance of public pathology foundation models and provide insights into best practices for training new foundation models and selecting appropriate pretrained models.

The rapid adoption of large language models (LLMs) in multi-agent systems has highlighted their impressive capabilities in various applications, such as collaborative problem-solving and autonomous negotiation. However, the security implications of these LLM-based multi-agent systems have not been thoroughly investigated, particularly concerning the spread of manipulated knowledge. In this paper, we investigate this critical issue by constructing a detailed threat model and a comprehensive simulation environment that mirrors real-world multi-agent deployments in a trusted platform. Subsequently, we propose a novel two-stage attack method involving Persuasiveness Injection and Manipulated Knowledge Injection to systematically explore the potential for manipulated knowledge (i.e., counterfactual and toxic knowledge) spread without explicit prompt manipulation. Our method leverages the inherent vulnerabilities of LLMs in handling world knowledge, which can be exploited by attackers to unconsciously spread fabricated information. Through extensive experiments, we demonstrate that our attack method can successfully induce LLM-based agents to spread both counterfactual and toxic knowledge without degrading their foundational capabilities during agent communication. Furthermore, we show that these manipulations can persist through popular retrieval-augmented generation frameworks, where several benign agents store and retrieve manipulated chat histories for future interactions. This persistence indicates that even after the interaction has ended, the benign agents may continue to be influenced by manipulated knowledge. Our findings reveal significant security risks in LLM-based multi-agent systems, emphasizing the imperative need for robust defenses against manipulated knowledge spread, such as introducing ``guardian'' agents and advanced fact-checking tools.

Hyperspherical Prototypical Learning (HPL) is a supervised approach to representation learning that designs class prototypes on the unit hypersphere. The prototypes bias the representations to class separation in a scale invariant and known geometry. Previous approaches to HPL have either of the following shortcomings: (i) they follow an unprincipled optimisation procedure; or (ii) they are theoretically sound, but are constrained to only one possible latent dimension. In this paper, we address both shortcomings. To address (i), we present a principled optimisation procedure whose solution we show is optimal. To address (ii), we construct well-separated prototypes in a wide range of dimensions using linear block codes. Additionally, we give a full characterisation of the optimal prototype placement in terms of achievable and converse bounds, showing that our proposed methods are near-optimal.

Generative pre-trained transformers (GPT's) are a type of large language machine learning model that are unusually adept at producing novel, and coherent, natural language. In this study the ability of GPT models to generate novel and correct versions, and notably very insecure versions, of implementations of the cryptographic hash function SHA-1 is examined. The GPT models Llama-2-70b-chat-h, Mistral-7B-Instruct-v0.1, and zephyr-7b-alpha are used. The GPT models are prompted to re-write each function using a modified version of the localGPT framework and langchain to provide word embedding context of the full source code and header files to the model, resulting in over 150,000 function re-write GPT output text blocks, approximately 50,000 of which were able to be parsed as C code and subsequently compiled. The generated code is analyzed for being compilable, correctness of the algorithm, memory leaks, compiler optimization stability, and character distance to the reference implementation. Remarkably, several generated function variants have a high implementation security risk of being correct for some test vectors, but incorrect for other test vectors. Additionally, many function implementations were not correct to the reference algorithm of SHA-1, but produced hashes that have some of the basic characteristics of hash functions. Many of the function re-writes contained serious flaws such as memory leaks, integer overflows, out of bounds accesses, use of uninitialised values, and compiler optimization instability. Compiler optimization settings and SHA-256 hash checksums of the compiled binaries are used to cluster implementations that are equivalent but may not have identical syntax - using this clustering over 100,000 novel and correct versions of the SHA-1 codebase were generated where each component C function of the reference implementation is different from the original code.

The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

北京阿比特科技有限公司