The performance of large language models (LLMs) has recently improved to the point where the models can perform well on many language tasks. We show here that for the first time, the models can also generate coherent and valid formal analyses of linguistic data and illustrate the vast potential of large language models for analyses of their metalinguistic abilities. LLMs are primarily trained on language data in the form of text; analyzing and evaluating their metalinguistic abilities improves our understanding of their general capabilities and sheds new light on theoretical models in linguistics. In this paper, we probe into GPT-4's metalinguistic capabilities by focusing on three subfields of formal linguistics: syntax, phonology, and semantics. We outline a research program for metalinguistic analyses of large language models, propose experimental designs, provide general guidelines, discuss limitations, and offer future directions for this line of research. This line of inquiry also exemplifies behavioral interpretability of deep learning, where models' representations are accessed by explicit prompting rather than internal representations.
Large language models (LLMs) have shown promise as automated evaluators for assessing the quality of answers generated by AI systems. However, these LLM-based evaluators exhibit position bias, or inconsistency, when used to evaluate candidate answers in pairwise comparisons, favoring either the first or second answer regardless of content. To address this limitation, we propose PORTIA, an alignment-based system designed to mimic human comparison strategies to calibrate position bias in a lightweight yet effective manner. Specifically, PORTIA splits the answers into multiple segments, aligns similar content across candidate answers, and then merges them back into a single prompt for evaluation by LLMs. We conducted extensive experiments with six diverse LLMs to evaluate 11,520 answer pairs. Our results show that PORTIA markedly enhances the consistency rates for all the models and comparison forms tested, achieving an average relative improvement of 47.46%. Remarkably, PORTIA enables less advanced GPT models to achieve 88% agreement with the state-of-the-art GPT-4 model at just 10% of the cost. Furthermore, it rectifies around 80% of the position bias instances within the GPT-4 model, elevating its consistency rate up to 98%. Subsequent human evaluations indicate that the PORTIA-enhanced GPT-3.5 model can even surpass the standalone GPT-4 in terms of alignment with human evaluators. These findings highlight PORTIA's ability to correct position bias, improve LLM consistency, and boost performance while keeping cost-efficiency. This represents a valuable step toward a more reliable and scalable use of LLMs for automated evaluations across diverse applications.
Language models have been foundations in various scenarios of NLP applications, but it has not been well applied in language variety studies, even for the most popular language like English. This paper represents one of the few initial efforts to utilize the NLP technology in the paradigm of World Englishes, specifically in creating a multi-variety corpus for studying Asian Englishes. We present an overview of the CCAE -- Corpus of Chinese-based Asian English, a suite of corpora comprising six Chinese-based Asian English varieties. It is based on 340 million tokens in 448 thousand web documents from six regions. The ontology of data would make the corpus a helpful resource with enormous research potential for Asian Englishes (especially for Chinese Englishes for which there has not been a publicly accessible corpus yet so far) and an ideal source for variety-specific language modeling and downstream tasks, thus setting the stage for NLP-based World Englishes studies. And preliminary experiments on this corpus reveal the practical value of CCAE. Finally, we make CCAE available at \href{//huggingface.co/datasets/CCAE/CCAE-Corpus}{this https URL}.
Studying language models (LMs) in terms of well-understood formalisms allows us to precisely characterize their abilities and limitations. Previous work has investigated the representational capacity of recurrent neural network (RNN) LMs in terms of their capacity to recognize unweighted formal languages. However, LMs do not describe unweighted formal languages -- rather, they define probability distributions over strings. In this work, we study what classes of such probability distributions RNN LMs can represent, which allows us to make more direct statements about their capabilities. We show that simple RNNs are equivalent to a subclass of probabilistic finite-state automata, and can thus model a strict subset of probability distributions expressible by finite-state models. Furthermore, we study the space complexity of representing finite-state LMs with RNNs. We show that, to represent an arbitrary deterministic finite-state LM with $N$ states over an alphabet $\Sigma$, an RNN requires $\Omega\left(N |\Sigma|\right)$ neurons. These results present a first step towards characterizing the classes of distributions RNN LMs can represent and thus help us understand their capabilities and limitations.
This paper pursues the insight that language models naturally enable an intelligent variation operator similar in spirit to evolutionary crossover. In particular, language models of sufficient scale demonstrate in-context learning, i.e. they can learn from associations between a small number of input patterns to generate outputs incorporating such associations (also called few-shot prompting). This ability can be leveraged to form a simple but powerful variation operator, i.e. to prompt a language model with a few text-based genotypes (such as code, plain-text sentences, or equations), and to parse its corresponding output as those genotypes' offspring. The promise of such language model crossover (which is simple to implement and can leverage many different open-source language models) is that it enables a simple mechanism to evolve semantically-rich text representations (with few domain-specific tweaks), and naturally benefits from current progress in language models. Experiments in this paper highlight the versatility of language-model crossover, through evolving binary bit-strings, sentences, equations, text-to-image prompts, and Python code. The conclusion is that language model crossover is a promising method for evolving genomes representable as text.
Joint modeling of multi-speaker ASR and speaker diarization has recently shown promising results in speaker-attributed automatic speech recognition (SA-ASR).Although being able to obtain state-of-the-art (SOTA) performance, most of the studies are based on an autoregressive (AR) decoder which generates tokens one-by-one and results in a large real-time factor (RTF). To speed up inference, we introduce a recently proposed non-autoregressive model Paraformer as an acoustic model in the SA-ASR model.Paraformer uses a single-step decoder to enable parallel generation, obtaining comparable performance to the SOTA AR transformer models. Besides, we propose a speaker-filling strategy to reduce speaker identification errors and adopt an inter-CTC strategy to enhance the encoder's ability in acoustic modeling. Experiments on the AliMeeting corpus show that our model outperforms the cascaded SA-ASR model by a 6.1% relative speaker-dependent character error rate (SD-CER) reduction on the test set. Moreover, our model achieves a comparable SD-CER of 34.8% with only 1/10 RTF compared with the SOTA joint AR SA-ASR model.
Retrieving documents and prepending them in-context at inference time improves performance of language model (LMs) on a wide range of tasks. However, these documents, often spanning hundreds of words, make inference substantially more expensive. We propose compressing the retrieved documents into textual summaries prior to in-context integration. This not only reduces the computational costs but also relieves the burden of LMs to identify relevant information in long retrieved documents. We present two compressors -- an extractive compressor which selects useful sentences from retrieved documents and an abstractive compressor which generates summaries by synthesizing information from multiple documents. Both compressors are trained to improve LMs' performance on end tasks when the generated summaries are prepended to the LMs' input, while keeping the summary concise.If the retrieved documents are irrelevant to the input or offer no additional information to LM, our compressor can return an empty string, implementing selective augmentation.We evaluate our approach on language modeling task and open domain question answering task. We achieve a compression rate of as low as 6% with minimal loss in performance for both tasks, significantly outperforming the off-the-shelf summarization models. We show that our compressors trained for one LM can transfer to other LMs on the language modeling task and provide summaries largely faithful to the retrieved documents.
Large language models (LLMs) have revolutionized the field of artificial intelligence, endowing it with sophisticated language understanding and generation capabilities. However, when faced with more complex and interconnected tasks that demand a profound and iterative thought process, LLMs reveal their inherent limitations. Autonomous LLM-powered multi-agent systems represent a strategic response to these challenges. Such systems strive for autonomously tackling user-prompted goals by decomposing them into manageable tasks and orchestrating their execution and result synthesis through a collective of specialized intelligent agents. Equipped with LLM-powered reasoning capabilities, these agents harness the cognitive synergy of collaborating with their peers, enhanced by leveraging contextual resources such as tools and datasets. While these architectures hold promising potential in amplifying AI capabilities, striking the right balance between different levels of autonomy and alignment remains the crucial challenge for their effective operation. This paper proposes a comprehensive multi-dimensional taxonomy, engineered to analyze how autonomous LLM-powered multi-agent systems balance the dynamic interplay between autonomy and alignment across various aspects inherent to architectural viewpoints such as goal-driven task management, agent composition, multi-agent collaboration, and context interaction. It also includes a domain-ontology model specifying fundamental architectural concepts. Our taxonomy aims to empower researchers, engineers, and AI practitioners to systematically analyze the architectural dynamics and balancing strategies employed by these increasingly prevalent AI systems. The exploratory taxonomic classification of selected representative LLM-powered multi-agent systems illustrates its practical utility and reveals potential for future research and development.
Large language models (LLMs) have achieved remarkable performance in various evaluation benchmarks. However, concerns about their performance are raised on potential data contamination in their considerable volume of training corpus. Moreover, the static nature and fixed complexity of current benchmarks may inadequately gauge the advancing capabilities of LLMs. In this paper, we introduce DyVal, a novel, general, and flexible evaluation protocol for dynamic evaluation of LLMs. Based on our proposed dynamic evaluation framework, we build graph-informed DyVal by leveraging the structural advantage of directed acyclic graphs to dynamically generate evaluation samples with controllable complexities. DyVal generates challenging evaluation sets on reasoning tasks including mathematics, logical reasoning, and algorithm problems. We evaluate various LLMs ranging from Flan-T5-large to ChatGPT and GPT4. Experiments demonstrate that LLMs perform worse in DyVal-generated evaluation samples with different complexities, emphasizing the significance of dynamic evaluation. We also analyze the failure cases and results of different prompting methods. Moreover, DyVal-generated samples are not only evaluation sets, but also helpful data for fine-tuning to improve the performance of LLMs on existing benchmarks. We hope that DyVal can shed light on the future evaluation research of LLMs.
Recent developments in large language models (LLMs) have shown promise in enhancing the capabilities of natural language processing (NLP). Despite these successes, there remains a dearth of research dedicated to the NLP problem-solving abilities of LLMs. To fill the gap in this area, we present a unique benchmarking dataset, NLPBench, comprising 378 college-level NLP questions spanning various NLP topics sourced from Yale University's prior final exams. NLPBench includes questions with context, in which multiple sub-questions share the same public information, and diverse question types, including multiple choice, short answer, and math. Our evaluation, centered on LLMs such as GPT-3.5/4, PaLM-2, and LLAMA-2, incorporates advanced prompting strategies like the chain-of-thought (CoT) and tree-of-thought (ToT). Our study reveals that the effectiveness of the advanced prompting strategies can be inconsistent, occasionally damaging LLM performance, especially in smaller models like the LLAMA-2 (13b). Furthermore, our manual assessment illuminated specific shortcomings in LLMs' scientific problem-solving skills, with weaknesses in logical decomposition and reasoning notably affecting results.
Large language models (LLMs) such as GPT-4 have exhibited remarkable performance in a variety of tasks, but this strong performance often comes with the high expense of using paid API services. In this paper, we are motivated to study building an LLM cascade to save the cost of using LLMs, particularly for performing reasoning (e.g., mathematical, causal) tasks. Our cascade pipeline follows the intuition that simpler questions can be addressed by a weaker but more affordable LLM, whereas only the challenging questions necessitate the stronger and more expensive LLM. To realize this decision-making, we consider the "answer consistency" of the weaker LLM as a signal of the question difficulty and propose several methods for the answer sampling and consistency checking, including one leveraging a mixture of two thought representations (i.e., Chain-of-Thought and Program-of-Thought). Through experiments on six reasoning benchmark datasets, with GPT-3.5-turbo and GPT-4 being the weaker and stronger LLMs, respectively, we demonstrate that our proposed LLM cascades can achieve performance comparable to using solely the stronger LLM but require only 40% of its cost.