Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, variational inference and stochastic calculus, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We show that these phase-transitions are always in a mean-field universality class, as they are the result of a self-consistency condition in the generative dynamics. We argue that the critical instability that arises from the phase transitions lies at the heart of their generative capabilities, which are characterized by a set of mean field critical exponents. Furthermore, using the statistical physics of disordered systems, we show that memorization can be understood as a form of critical condensation corresponding to a disordered phase transition. Finally, we show that the dynamic equation of the generative process can be interpreted as a stochastic adiabatic transformation that minimizes the free energy while keeping the system in thermal equilibrium.
Logistic regression is widely used in many areas of knowledge. Several works compare the performance of lasso and maximum likelihood estimation in logistic regression. However, part of these works do not perform simulation studies and the remaining ones do not consider scenarios in which the ratio of the number of covariates to sample size is high. In this work, we compare the discrimination performance of lasso and maximum likelihood estimation in logistic regression using simulation studies and applications. Variable selection is done both by lasso and by stepwise when maximum likelihood estimation is used. We consider a wide range of values for the ratio of the number of covariates to sample size. The main conclusion of the work is that lasso has a better discrimination performance than maximum likelihood estimation when the ratio of the number of covariates to sample size is high.
Correspondence analysis (CA) is a popular technique to visualize the relationship between two categorical variables. CA uses the data from a two-way contingency table and is affected by the presence of outliers. The supplementary points method is a popular method to handle outliers. Its disadvantage is that the information from entire rows or columns is removed. However, outliers can be caused by cells only. In this paper, a reconstitution algorithm is introduced to cope with such cells. This algorithm can reduce the contribution of cells in CA instead of deleting entire rows or columns. Thus the remaining information in the row and column involved can be used in the analysis. The reconstitution algorithm is compared with two alternative methods for handling outliers, the supplementary points method and MacroPCA. It is shown that the proposed strategy works well.
We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.
Histogramming is often taken for granted, but the power and compactness of partially aggregated, multidimensional summary statistics, and their fundamental connection to differential and integral calculus make them formidable statistical objects, especially when very large data volumes are involved. But expressing these concepts robustly and efficiently in high-dimensional parameter spaces and for large data samples is a highly non-trivial challenge -- doubly so if the resulting library is to remain usable by scientists as opposed to software engineers. In this paper we summarise the core principles required for consistent generalised histogramming, and use them to motivate the design principles and implementation mechanics of the re-engineered YODA histogramming library, a key component of physics data-model comparison and statistical interpretation in collider physics.
Compositional data arise in many areas of research in the natural and biomedical sciences. One prominent example is in the study of the human gut microbiome, where one can measure the relative abundance of many distinct microorganisms in a subject's gut. Often, practitioners are interested in learning how the dependencies between microbes vary across distinct populations or experimental conditions. In statistical terms, the goal is to estimate a covariance matrix for the (latent) log-abundances of the microbes in each of the populations. However, the compositional nature of the data prevents the use of standard estimators for these covariance matrices. In this article, we propose an estimator of multiple covariance matrices which allows for information sharing across distinct populations of samples. Compared to some existing estimators, which estimate the covariance matrices of interest indirectly, our estimator is direct, ensures positive definiteness, and is the solution to a convex optimization problem. We compute our estimator using a proximal-proximal gradient descent algorithm. Asymptotic properties of our estimator reveal that it can perform well in high-dimensional settings. Through simulation studies, we demonstrate that our estimator can outperform existing estimators. We show that our method provides more reliable estimates than competitors in an analysis of microbiome data from subjects with chronic fatigue syndrome.
Calls to make scientific research more open have gained traction with a range of societal stakeholders. Open Science practices include but are not limited to the early sharing of results via preprints and openly sharing outputs such as data and code to make research more reproducible and extensible. Existing evidence shows that adopting Open Science practices has effects in several domains. In this study, we investigate whether adopting one or more Open Science practices leads to significantly higher citations for an associated publication, which is one form of academic impact. We use a novel dataset known as Open Science Indicators, produced by PLOS and DataSeer, which includes all PLOS publications from 2018 to 2023 as well as a comparison group sampled from the PMC Open Access Subset. In total, we analyze circa 122'000 publications. We calculate publication and author-level citation indicators and use a broad set of control variables to isolate the effect of Open Science Indicators on received citations. We show that Open Science practices are adopted to different degrees across scientific disciplines. We find that the early release of a publication as a preprint correlates with a significant positive citation advantage of about 20.2% on average. We also find that sharing data in an online repository correlates with a smaller yet still positive citation advantage of 4.3% on average. However, we do not find a significant citation advantage for sharing code. Further research is needed on additional or alternative measures of impact beyond citations. Our results are likely to be of interest to researchers, as well as publishers, research funders, and policymakers.
The implication problem for conditional independence (CI) asks whether the fact that a probability distribution obeys a given finite set of CI relations implies that a further CI statement also holds in this distribution. This problem has a long and fascinating history, cumulating in positive results about implications now known as the semigraphoid axioms as well as impossibility results about a general finite characterization of CI implications. Motivated by violation of faithfulness assumptions in causal discovery, we study the implication problem in the special setting where the CI relations are obtained from a directed acyclic graphical (DAG) model along with one additional CI statement. Focusing on the Gaussian case, we give a complete characterization of when such an implication is graphical by using algebraic techniques. Moreover, prompted by the relevance of strong faithfulness in statistical guarantees for causal discovery algorithms, we give a graphical solution for an approximate CI implication problem, in which we ask whether small values of one additional partial correlation entail small values for yet a further partial correlation.
With the advent of massive data sets much of the computational science and engineering community has moved toward data-intensive approaches in regression and classification. However, these present significant challenges due to increasing size, complexity and dimensionality of the problems. In particular, covariance matrices in many cases are numerically unstable and linear algebra shows that often such matrices cannot be inverted accurately on a finite precision computer. A common ad hoc approach to stabilizing a matrix is application of a so-called nugget. However, this can change the model and introduce error to the original solution. It is well known from numerical analysis that ill-conditioned matrices cannot be accurately inverted. In this paper we develop a multilevel computational method that scales well with the number of observations and dimensions. A multilevel basis is constructed adapted to a kD-tree partitioning of the observations. Numerically unstable covariance matrices with large condition numbers can be transformed into well conditioned multilevel ones without compromising accuracy. Moreover, it is shown that the multilevel prediction exactly solves the Best Linear Unbiased Predictor (BLUP) and Generalized Least Squares (GLS) model, but is numerically stable. The multilevel method is tested on numerically unstable problems of up to 25 dimensions. Numerical results show speedups of up to 42,050 times for solving the BLUP problem, but with the same accuracy as the traditional iterative approach. For very ill-conditioned cases the speedup is infinite. In addition, decay estimates of the multilevel covariance matrices are derived based on high dimensional interpolation techniques from the field of numerical analysis. This work lies at the intersection of statistics, uncertainty quantification, high performance computing and computational applied mathematics.
Even though novel imaging techniques have been successful in studying brain structure and function, the measured biological signals are often contaminated by multiple sources of noise, arising due to e.g. head movements of the individual being scanned, limited spatial/temporal resolution, or other issues specific to each imaging technology. Data preprocessing (e.g. denoising) is therefore critical. Preprocessing pipelines have become increasingly complex over the years, but also more flexible, and this flexibility can have a significant impact on the final results and conclusions of a given study. This large parameter space is often referred to as multiverse analyses. Here, we provide conceptual and practical tools for statistical analyses that can aggregate multiple pipeline results along with a new sensitivity analysis testing for hypotheses across pipelines such as "no effect across all pipelines" or "at least one pipeline with no effect". The proposed framework is generic and can be applied to any multiverse scenario, but we illustrate its use based on positron emission tomography data.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.