亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Rapidly developing machine learning methods has stimulated research interest in computationally reconstructing differential equations (DEs) from observational data which may provide additional insight into underlying causative mechanisms. In this paper, we propose a novel neural-ODE based method that uses spectral expansions in space to learn spatiotemporal DEs. The major advantage of our spectral neural DE learning approach is that it does not rely on spatial discretization, thus allowing the target spatiotemporal equations to contain long range, nonlocal spatial interactions that act on unbounded spatial domains. Our spectral approach is shown to be as accurate as some of the latest machine learning approaches for learning PDEs operating on bounded domains. By developing a spectral framework for learning both PDEs and integro-differential equations, we extend machine learning methods to apply to unbounded DEs and a larger class of problems.

相關內容

Nonresponse after probability sampling is a universal challenge in survey sampling, often necessitating adjustments to mitigate sampling and selection bias simultaneously. This study explored the removal of bias and effective utilization of available information, not just in nonresponse but also in the scenario of data integration, where summary statistics from other data sources are accessible. We reformulate these settings within a two-step monotone missing data framework, where the first step of missingness arises from sampling and the second originates from nonresponse. Subsequently, we derive the semiparametric efficiency bound for the target parameter. We also propose adaptive estimators utilizing methods of moments and empirical likelihood approaches to attain the lower bound. The proposed estimator exhibits both efficiency and double robustness. However, attaining efficiency with an adaptive estimator requires the correct specification of certain working models. To reinforce robustness against the misspecification of working models, we extend the property of double robustness to multiple robustness by proposing a two-step empirical likelihood method that effectively leverages empirical weights. A numerical study is undertaken to investigate the finite-sample performance of the proposed methods. We further applied our methods to a dataset from the National Health and Nutrition Examination Survey data by efficiently incorporating summary statistics from the National Health Interview Survey data.

Inverse reinforcement learning (IRL) seeks to learn the reward function from expert trajectories, to understand the task for imitation or collaboration thereby removing the need for manual reward engineering. However, IRL in the context of large, high-dimensional problems with unknown dynamics has been particularly challenging. In this paper, we present a new Variational Lower Bound for IRL (VLB-IRL), which is derived under the framework of a probabilistic graphical model with an optimality node. Our method simultaneously learns the reward function and policy under the learned reward function by maximizing the lower bound, which is equivalent to minimizing the reverse Kullback-Leibler divergence between an approximated distribution of optimality given the reward function and the true distribution of optimality given trajectories. This leads to a new IRL method that learns a valid reward function such that the policy under the learned reward achieves expert-level performance on several known domains. Importantly, the method outperforms the existing state-of-the-art IRL algorithms on these domains by demonstrating better reward from the learned policy.

Parameterized convex minorant (PCM) method is proposed for the approximation of the objective function in amortized optimization. In the proposed method, the objective function approximator is expressed by the sum of a PCM and a nonnegative gap function, where the objective function approximator is bounded from below by the PCM convex in the optimization variable. The proposed objective function approximator is a universal approximator for continuous functions, and the global minimizer of the PCM attains the global minimum of the objective function approximator. Therefore, the global minimizer of the objective function approximator can be obtained by a single convex optimization. As a realization of the proposed method, extended parameterized log-sum-exp network is proposed by utilizing a parameterized log-sum-exp network as the PCM. Numerical simulation is performed for parameterized non-convex objective function approximation and for learning-based nonlinear model predictive control to demonstrate the performance and characteristics of the proposed method. The simulation results support that the proposed method can be used to learn objective functions and to find a global minimizer reliably and quickly by using convex optimization algorithms.

Sparse matrix representations are ubiquitous in computational science and machine learning, leading to significant reductions in compute time, in comparison to dense representation, for problems that have local connectivity. The adoption of sparse representation in leading ML frameworks such as PyTorch is incomplete, however, with support for both automatic differentiation and GPU acceleration missing. In this work, we present an implementation of a CSR-based sparse matrix wrapper for PyTorch with CUDA acceleration for basic matrix operations, as well as automatic differentiability. We also present several applications of the resulting sparse kernels to optimization problems, demonstrating ease of implementation and performance measurements versus their dense counterparts.

Data valuation has found various applications in machine learning, such as data filtering, efficient learning and incentives for data sharing. The most popular current approach to data valuation is the Shapley value. While popular for its various applications, Shapley value is computationally expensive even to approximate, as it requires repeated iterations of training models on different subsets of data. In this paper we show that the Shapley value of data points can be approximated more efficiently by leveraging the structural properties of machine learning problems. We derive convergence guarantees on the accuracy of the approximate Shapley value for different learning settings including Stochastic Gradient Descent with convex and non-convex loss functions. Our analysis suggests that in fact models trained on small subsets are more important in the context of data valuation. Based on this idea, we describe $\delta$-Shapley -- a strategy of only using small subsets for the approximation. Experiments show that this approach preserves approximate value and rank of data, while achieving speedup of up to 9.9x. In pre-trained networks the approach is found to bring more efficiency in terms of accurate evaluation using small subsets.

Applying the representational power of machine learning to the prediction of complex fluid dynamics has been a relevant subject of study for years. However, the amount of available fluid simulation data does not match the notoriously high requirements of machine learning methods. Researchers have typically addressed this issue by generating their own datasets, preventing a consistent evaluation of their proposed approaches. Our work introduces a generation procedure for synthetic multi-modal fluid simulations datasets. By leveraging a GPU implementation, our procedure is also efficient enough that no data needs to be exchanged between users, except for configuration files required to reproduce the dataset. Furthermore, our procedure allows multiple modalities (generating both geometry and photorealistic renderings) and is general enough for it to be applied to various tasks in data-driven fluid simulation. We then employ our framework to generate a set of thoughtfully designed benchmark datasets, which attempt to span specific fluid simulation scenarios in a meaningful way. The properties of our contributions are demonstrated by evaluating recently published algorithms for the neural fluid simulation and fluid inverse rendering tasks using our benchmark datasets. Our contribution aims to fulfill the community's need for standardized benchmarks, fostering research that is more reproducible and robust than previous endeavors.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司