亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the race towards carbon neutrality, the building sector has fallen behind and bears the potential to endanger the progress made across other industries. This is because buildings exhibit a life span of several decades which creates substantial inertia in the face of climate change. This inertia is further exacerbated by the scale of the existing building stock. With several billion operational buildings around the globe, working towards a carbon-neutral building sector requires solutions which enable stakeholders to accurately identify and retrofit subpar buildings at scale. However, improving the energy efficiency of the existing building stock through retrofits in a targeted and efficient way remains challenging. This is because, as of today, the energy efficiency of buildings is generally determined by on-site visits of certified energy auditors which makes the process slow, costly, and geographically incomplete. In order to accelerate the identification of promising retrofit targets, this work proposes a new method which can estimate a building's energy efficiency using purely remotely sensed data such as street view and aerial imagery, OSM-derived footprint areas, and satellite-borne land surface temperature (LST) measurements. We find that in the binary setting of distinguishing efficient from inefficient buildings, our end-to-end deep learning model achieves a macro-averaged F1-score of 62.06\%. As such, this work shows the potential and complementary nature of remotely sensed data in predicting building attributes such as energy efficiency and opens up new opportunities for future work to integrate additional data sources.

相關內容

We are motivated by the problem of learning policies for robotic systems with rich sensory inputs (e.g., vision) in a manner that allows us to guarantee generalization to environments unseen during training. We provide a framework for providing such generalization guarantees by leveraging a finite dataset of real-world environments in combination with a (potentially inaccurate) generative model of environments. The key idea behind our approach is to utilize the generative model in order to implicitly specify a prior over policies. This prior is updated using the real-world dataset of environments by minimizing an upper bound on the expected cost across novel environments derived via Probably Approximately Correct (PAC)-Bayes generalization theory. We demonstrate our approach on two simulated systems with nonlinear/hybrid dynamics and rich sensing modalities: (i) quadrotor navigation with an onboard vision sensor, and (ii) grasping objects using a depth sensor. Comparisons with prior work demonstrate the ability of our approach to obtain stronger generalization guarantees by utilizing generative models. We also present hardware experiments for validating our bounds for the grasping task.

Human motion prediction, which plays a key role in computer vision, generally requires a past motion sequence as input. However, in real applications, a complete and correct past motion sequence can be too expensive to achieve. In this paper, we propose a novel approach to predicting future human motions from a much weaker condition, i.e., a single image, with mixture density networks (MDN) modeling. Contrary to most existing deep human motion prediction approaches, the multimodal nature of MDN enables the generation of diverse future motion hypotheses, which well compensates for the strong stochastic ambiguity aggregated by the single input and human motion uncertainty. In designing the loss function, we further introduce the energy-based formulation to flexibly impose prior losses over the learnable parameters of MDN to maintain motion coherence as well as improve the prediction accuracy by customizing the energy functions. Our trained model directly takes an image as input and generates multiple plausible motions that satisfy the given condition. Extensive experiments on two standard benchmark datasets demonstrate the effectiveness of our method in terms of prediction diversity and accuracy.

This paper presents a computational framework for the Principal Geodesic Analysis of merge trees (MT-PGA), a novel adaptation of the celebrated Principal Component Analysis (PCA) framework [87] to the Wasserstein metric space of merge trees [92]. We formulate MT-PGA computation as a constrained optimization problem, aiming at adjusting a basis of orthogonal geodesic axes, while minimizing a fitting energy. We introduce an efficient, iterative algorithm which exploits shared-memory parallelism, as well as an analytic expression of the fitting energy gradient, to ensure fast iterations. Our approach also trivially extends to extremum persistence diagrams. Extensive experiments on public ensembles demonstrate the efficiency of our approach - with MT-PGA computations in the orders of minutes for the largest examples. We show the utility of our contributions by extending to merge trees two typical PCA applications. First, we apply MT-PGA to data reduction and reliably compress merge trees by concisely representing them by their first coordinates in the MT-PGA basis. Second, we present a dimensionality reduction framework exploiting the first two directions of the MT-PGA basis to generate two-dimensional layouts of the ensemble. We augment these layouts with persistence correlation views, enabling global and local visual inspections of the feature variability in the ensemble. In both applications, quantitative experiments assess the relevance of our framework. Finally, we provide a lightweight C++ implementation that can be used to reproduce our results.

In this paper we present a new dynamical systems algorithm for clustering in hyperspectral images. The main idea of the algorithm is that data points are \`pushed\' in the direction of increasing density and groups of pixels that end up in the same dense regions belong to the same class. This is essentially a numerical solution of the differential equation defined by the gradient of the density of data points on the data manifold. The number of classes is automated and the resulting clustering can be extremely accurate. In addition to providing a accurate clustering, this algorithm presents a new tool for understanding hyperspectral data in high dimensions. We evaluate the algorithm on the Urban (Available at www.tec.ary.mil/Hypercube/) scene comparing performance against the k-means algorithm using pre-identified classes of materials as ground truth.

In this paper, we propose an iterative self-training framework for sim-to-real 6D object pose estimation to facilitate cost-effective robotic grasping. Given a bin-picking scenario, we establish a photo-realistic simulator to synthesize abundant virtual data, and use this to train an initial pose estimation network. This network then takes the role of a teacher model, which generates pose predictions for unlabeled real data. With these predictions, we further design a comprehensive adaptive selection scheme to distinguish reliable results, and leverage them as pseudo labels to update a student model for pose estimation on real data. To continuously improve the quality of pseudo labels, we iterate the above steps by taking the trained student model as a new teacher and re-label real data using the refined teacher model. We evaluate our method on a public benchmark and our newly-released dataset, achieving an ADD(-S) improvement of 11.49% and 22.62% respectively. Our method is also able to improve robotic bin-picking success by 19.54%, demonstrating the potential of iterative sim-to-real solutions for robotic applications.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

Humans can quickly learn new visual concepts, perhaps because they can easily visualize or imagine what novel objects look like from different views. Incorporating this ability to hallucinate novel instances of new concepts might help machine vision systems perform better low-shot learning, i.e., learning concepts from few examples. We present a novel approach to low-shot learning that uses this idea. Our approach builds on recent progress in meta-learning ("learning to learn") by combining a meta-learner with a "hallucinator" that produces additional training examples, and optimizing both models jointly. Our hallucinator can be incorporated into a variety of meta-learners and provides significant gains: up to a 6 point boost in classification accuracy when only a single training example is available, yielding state-of-the-art performance on the challenging ImageNet low-shot classification benchmark.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

Most of the internet today is composed of digital media that includes videos and images. With pixels becoming the currency in which most transactions happen on the internet, it is becoming increasingly important to have a way of browsing through this ocean of information with relative ease. YouTube has 400 hours of video uploaded every minute and many million images are browsed on Instagram, Facebook, etc. Inspired by recent advances in the field of deep learning and success that it has gained on various problems like image captioning and, machine translation , word2vec , skip thoughts, etc, we present DeepSeek a natural language processing based deep learning model that allows users to enter a description of the kind of images that they want to search, and in response the system retrieves all the images that semantically and contextually relate to the query. Two approaches are described in the following sections.

Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal

北京阿比特科技有限公司