亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantization and pruning are known to be two effective Deep Neural Networks model compression methods. In this paper, we propose Automatic Prune Binarization (APB), a novel compression technique combining quantization with pruning. APB enhances the representational capability of binary networks using a few full-precision weights. Our technique jointly maximizes the accuracy of the network while minimizing its memory impact by deciding whether each weight should be binarized or kept in full precision. We show how to efficiently perform a forward pass through layers compressed using APB by decomposing it into a binary and a sparse-dense matrix multiplication. Moreover, we design two novel efficient algorithms for extremely quantized matrix multiplication on CPU, leveraging highly efficient bitwise operations. The proposed algorithms are 6.9x and 1.5x faster than available state-of-the-art solutions. We perform an extensive evaluation of APB on two widely adopted model compression datasets, namely CIFAR10 and ImageNet. APB shows to deliver better accuracy/memory trade-off compared to state-of-the-art methods based on i) quantization, ii) pruning, and iii) combination of pruning and quantization. APB outperforms quantization also in the accuracy/efficiency trade-off, being up to 2x faster than the 2-bits quantized model with no loss in accuracy.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡(luo)會(hui)議(yi)。 Publisher:IFIP。 SIT:

In this paper, we present two novel Asymptotic-Preserving Neural Networks (APNNs) for tackling multiscale time-dependent kinetic problems, encompassing the linear transport equation and Bhatnagar-Gross-Krook (BGK) equation with diffusive scaling. Our primary objective is to devise efficient and accurate APNN approaches for resolving multiscale kinetic equations. We have established a neural network based on even-odd decomposition and concluded that enforcing the initial condition for the linear transport equation with inflow boundary conditions is crucial. This APNN method based on even-odd parity relaxes the stringent conservation prerequisites while concurrently introducing an auxiliary deep neural network. Additionally, we have incorporated the conservation laws of mass, momentum, and energy for the Boltzmann-BGK equation into the APNN framework by enforcing exact boundary conditions. This is our second contribution. The most notable finding of this study is that approximating the zeroth, first and second moments of the particle density distribution is simpler than the distribution itself. Furthermore, a compelling phenomenon in the training process is that the convergence of density is swifter than that of momentum and energy. Finally, we investigate several benchmark problems to demonstrate the efficacy of our proposed APNN methods.

This work discusses the model reduction problem for large-scale multi-symplectic PDEs with cubic invariants. For this, we present a linearly implicit global energy-preserving method to construct reduced-order models. This allows to construct reduced-order models in the form of Hamiltonian systems suitable for long-time integration. Furthermore, We prove that the constructed reduced-order models preserve global energy, and the spatially discrete equations also preserve the spatially-discrete local energy conversation law. We illustrate the efficiency of the proposed method using three numerical examples, namely a linear wave equation, the Korteweg-de Vries equation, and the Camassa-Holm equation, and present a comparison with the classical POD-Galerkin method.

In this paper, we introduce a nonlinear stochastic model to describe the propagation of information inside a computer processor. In this model, a computational task is divided into stages, and information can flow from one stage to another. The model is formulated as a spatially-extended, continuous-time Markov chain where space represents different stages. This model is equivalent to a spatially-extended version of the M/M/s queue. The main modeling feature is the throttling function which describes the processor slowdown when the amount of information falls below a certain threshold. We derive the stationary distribution for this stochastic model and develop a closure for a deterministic ODE system that approximates the evolution of the mean and variance of the stochastic model. We demonstrate the validity of the closure with numerical simulations.

In this paper, we introduce a computational analysis of the field recording dataset of approximately 700 hours of Korean folk songs, which were recorded around 1980-90s. Because most of the songs were sung by non-expert musicians without accompaniment, the dataset provides several challenges. To address this challenge, we utilized self-supervised learning with convolutional neural network based on pitch contour, then analyzed how the musical concept of tori, a classification system defined by a specific scale, ornamental notes, and an idiomatic melodic contour, is captured by the model. The experimental result shows that our approach can better capture the characteristics of tori compared to traditional pitch histograms. Using our approaches, we have examined how musical discussions proposed in existing academia manifest in the actual field recordings of Korean folk songs.

Effective fusion of multi-scale features is crucial for improving speaker verification performance. While most existing methods aggregate multi-scale features in a layer-wise manner via simple operations, such as summation or concatenation. This paper proposes a novel architecture called Enhanced Res2Net (ERes2Net), which incorporates both local and global feature fusion techniques to improve the performance. The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal. The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal. To facilitate effective feature fusion in both LFF and GFF, an attentional feature fusion module is employed in the ERes2Net architecture, replacing summation or concatenation operations. A range of experiments conducted on the VoxCeleb datasets demonstrate the superiority of the ERes2Net in speaker verification. Code has been made publicly available at //github.com/alibaba-damo-academy/3D-Speaker.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司