亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The most popular method for computing the matrix logarithm is a combination of the inverse scaling and squaring method in conjunction with a Pad\'e approximation, sometimes accompanied by the Schur decomposition. The main computational effort lies in matrix-matrix multiplications and left matrix division. In this work we illustrate that the number of such operations can be substantially reduced, by using a graph based representation of an efficient polynomial evaluation scheme. A technique to analyze the rounding error is proposed, and backward error analysis is adapted. We provide substantial simulations illustrating competitiveness both in terms of computation time and rounding errors.

相關內容

Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they now arise in an increasingly large number of applications. In this work, we consider algebraic parameter-free preconditioning techniques for the iterative solution of generalized multiterm Sylvester equations. They consist in constructing low Kronecker rank approximations of either the operator itself or its inverse. While the former requires solving standard Sylvester equations in each iteration, the latter only requires matrix-matrix multiplications, which are highly optimized on modern computer architectures. Moreover, low Kronecker rank approximate inverses can be easily combined with sparse approximate inverse techniques, thereby enhancing their performance with little or no damage to their effectiveness.

The noncommutative sum-of-squares (ncSoS) hierarchy was introduced by Navascu\'{e}s-Pironio-Ac\'{i}n as a sequence of semidefinite programming relaxations for approximating values of noncommutative polynomial optimization problems, which were originally intended to generalize quantum values of nonlocal games. Recent work has started to analyze the hierarchy for approximating ground energies of local Hamiltonians, initially through rounding algorithms which output product states for degree-2 ncSoS applied to Quantum Max-Cut. Some rounding methods are known which output entangled states, but they use degree-4 ncSoS. Based on this, Hwang-Neeman-Parekh-Thompson-Wright conjectured that degree-2 ncSoS cannot beat product state approximations for Quantum Max-Cut and gave a partial proof relying on a conjectural generalization of Borrell's inequality. In this work we consider a family of Hamiltonians (called the quantum rotor model in condensed matter literature or lattice $O(k)$ vector model in quantum field theory) with infinite-dimensional local Hilbert space $L^{2}(S^{k - 1})$, and show that a degree-2 ncSoS relaxation approximates the ground state energy better than any product state.

We consider a class of linear Vlasov partial differential equations driven by Wiener noise. Different types of stochastic perturbations are treated: additive noise, multiplicative It\^o and Stratonovich noise, and transport noise. We propose to employ splitting integrators for the temporal discretization of these stochastic partial differential equations. These integrators are designed in order to preserve qualitative properties of the exact solutions depending on the stochastic perturbation, such as preservation of norms or positivity of the solutions. We provide numerical experiments in order to illustrate the properties of the proposed integrators and investigate mean-square rates of convergence.

Spectral methods yield numerical solutions of the Galerkin-truncated versions of nonlinear partial differential equations involved especially in fluid dynamics. In the presence of discontinuities, such as shocks, spectral approximations develop Gibbs oscillations near the discontinuity. This causes the numerical solution to deviate quickly from the true solution. For spectral approximations of the 1D inviscid Burgers equation, nonlinear wave resonances lead to the formation of tygers in well-resolved areas of the flow, far from the shock. Recently, Besse(to be published) has proposed novel spectral relaxation (SR) and spectral purging (SP) schemes for the removal of tygers and Gibbs oscillations in spectral approximations of nonlinear conservation laws. For the 1D inviscid Burgers equation, it is shown that the novel SR and SP approximations of the solution converge strongly in L2 norm to the entropic weak solution, under an appropriate choice of kernels and related parameters. In this work, we carry out a detailed numerical investigation of SR and SP schemes when applied to the 1D inviscid Burgers equation and report the efficiency of shock capture and the removal of tygers. We then extend our study to systems of nonlinear hyperbolic conservation laws - such as the 2x2 system of the shallow water equations and the standard 3x3 system of 1D compressible Euler equations. For the latter, we generalise the implementation of SR methods to non-periodic problems using Chebyshev polynomials. We then turn to singular flow in the 1D wall approximation of the 3D-axisymmetric wall-bounded incompressible Euler equation. Here, in order to determine the blowup time of the solution, we compare the decay of the width of the analyticity strip, obtained from the pure pseudospectral method, with the improved estimate obtained using the novel spectral relaxation scheme.

We present a new method to compute the solution to a nonlinear tensor differential equation with dynamical low-rank approximation. The idea of dynamical low-rank approximation is to project the differential equation onto the tangent space of a low-rank tensor manifold at each time. Traditionally, an orthogonal projection onto the tangent space is employed, which is challenging to compute for nonlinear differential equations. We introduce a novel interpolatory projection onto the tangent space that is easily computed for many nonlinear differential equations and satisfies the differential equation at a set of carefully selected indices. To select these indices, we devise a new algorithm based on the discrete empirical interpolation method (DEIM) that parameterizes any tensor train and its tangent space with tensor cross interpolants. We demonstrate the proposed method with applications to tensor differential equations arising from the discretization of partial differential equations.

The approach to analysing compositional data has been dominated by the use of logratio transformations, to ensure exact subcompositional coherence and, in some situations, exact isometry as well. A problem with this approach is that data zeros, found in most applications, have to be replaced to allow the logarithmic transformation. An alternative new approach, called the `chiPower' transformation, which allows data zeros, is to combine the standardization inherent in the chi-square distance in correspondence analysis, with the essential elements of the Box-Cox power transformation. The chiPower transformation is justified because it} defines between-sample distances that tend to logratio distances for strictly positive data as the power parameter tends to zero, and are then equivalent to transforming to logratios. For data with zeros, a value of the power can be identified that brings the chiPower transformation as close as possible to a logratio transformation, without having to substitute the zeros. Especially in the area of high-dimensional data, this alternative approach can present such a high level of coherence and isometry as to be a valid approach to the analysis of compositional data. Furthermore, in a supervised learning context, if the compositional variables serve as predictors of a response in a modelling framework, for example generalized linear models, then the power can be used as a tuning parameter in optimizing the accuracy of prediction through cross-validation. The chiPower-transformed variables have a straightforward interpretation, since they are each identified with single compositional parts, not ratios.

We introduce a novel framework for the classification of functional data supported on nonlinear, and possibly random, manifold domains. The motivating application is the identification of subjects with Alzheimer's disease from their cortical surface geometry and associated cortical thickness map. The proposed model is based upon a reformulation of the classification problem as a regularized multivariate functional linear regression model. This allows us to adopt a direct approach to the estimation of the most discriminant direction while controlling for its complexity with appropriate differential regularization. Our approach does not require prior estimation of the covariance structure of the functional predictors, which is computationally prohibitive in our application setting. We provide a theoretical analysis of the out-of-sample prediction error of the proposed model and explore the finite sample performance in a simulation setting. We apply the proposed method to a pooled dataset from the Alzheimer's Disease Neuroimaging Initiative and the Parkinson's Progression Markers Initiative. Through this application, we identify discriminant directions that capture both cortical geometric and thickness predictive features of Alzheimer's disease that are consistent with the existing neuroscience literature.

With advances in scientific computing and mathematical modeling, complex scientific phenomena such as galaxy formations and rocket propulsion can now be reliably simulated. Such simulations can however be very time-intensive, requiring millions of CPU hours to perform. One solution is multi-fidelity emulation, which uses data of different fidelities to train an efficient predictive model which emulates the expensive simulator. For complex scientific problems and with careful elicitation from scientists, such multi-fidelity data may often be linked by a directed acyclic graph (DAG) representing its scientific model dependencies. We thus propose a new Graphical Multi-fidelity Gaussian Process (GMGP) model, which embeds this DAG structure (capturing scientific dependencies) within a Gaussian process framework. We show that the GMGP has desirable modeling traits via two Markov properties, and admits a scalable algorithm for recursive computation of the posterior mean and variance along at each depth level of the DAG. We also present a novel experimental design methodology over the DAG given an experimental budget, and propose a nonlinear extension of the GMGP via deep Gaussian processes. The advantages of the GMGP are then demonstrated via a suite of numerical experiments and an application to emulation of heavy-ion collisions, which can be used to study the conditions of matter in the Universe shortly after the Big Bang. The proposed model has broader uses in data fusion applications with graphical structure, which we further discuss.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司