In the past few years, text-to-audio models have emerged as a significant advancement in automatic audio gener- ation. Although they represent impressive technological progress, the effectiveness of their use in the development of audio applications remains uncertain. This paper aims to investigate these aspects, specifically focusing on the task of classification of environmental sounds. This study analyzes the performance of two different environmental classification systems when data generated from text-to-audio models is used for training. Two cases are considered: a) when the training dataset is augmented by data coming from two different text-to-audio models; and b) when the training dataset consists solely of synthetic audio generated. In both cases, the performance of the classification task is tested on real data. Results indicate that text-to-audio models are effective for dataset augmentation, whereas the performance of the models drops when relying on only generated audio.
6G will revolutionize the software world allowing faster cellular communications and a massive number of connected devices. 6G will enable a shift towards a continuous edge-to-cloud architecture. Current cloud solutions, where all the data is transferred and computed in the cloud, are not sustainable in such a large network of devices. Current technologies, including development methods, software architectures, and orchestration and offloading systems, still need to be prepared to cope with such requirements. In this paper, we conduct a Systematic Mapping Study to investigate the current research status of 6G Software Engineering. Results show that 18 research papers have been proposed in software process, software architecture, orchestration and offloading methods. Of these, software architecture and software-defined networks are respectively areas and topics that have received the most attention in 6G Software Engineering. In addition, the main types of results of these papers are methods, architectures, platforms, frameworks and algorithms. For the five tools/frameworks proposed, they are new and not currently studied by other researchers. The authors of these findings are mainly from China, India and Saudi Arabia. The results will enable researchers and practitioners to further research and extend for 6G Software Engineering.
The recent advancement of end-to-end neural audio codecs enables compressing audio at very low bitrates while reconstructing the output audio with high fidelity. Nonetheless, such improvements often come at the cost of increased model complexity. In this paper, we identify and address the problems of existing neural audio codecs. We show that the performance of Wave-U-Net does not increase consistently as the network depth increases. We analyze the root cause of such a phenomenon and suggest a variance-constrained design. Also, we reveal various distortions in previous waveform domain discriminators and propose a novel distortion-free discriminator. The resulting model, \textit{HILCodec}, is a real-time streaming audio codec that demonstrates state-of-the-art quality across various bitrates and audio types.
Existing diffusion-based video editing methods have achieved impressive results in motion editing. Most of the existing methods focus on the motion alignment between the edited video and the reference video. However, these methods do not constrain the background and object content of the video to remain unchanged, which makes it possible for users to generate unexpected videos. In this paper, we propose a one-shot video motion editing method called Edit-Your-Motion that requires only a single text-video pair for training. Specifically, we design the Detailed Prompt-Guided Learning Strategy (DPL) to decouple spatio-temporal features in space-time diffusion models. DPL separates learning object content and motion into two training stages. In the first training stage, we focus on learning the spatial features (the features of object content) and breaking down the temporal relationships in the video frames by shuffling them. We further propose Recurrent-Causal Attention (RC-Attn) to learn the consistent content features of the object from unordered video frames. In the second training stage, we restore the temporal relationship in video frames to learn the temporal feature (the features of the background and object's motion). We also adopt the Noise Constraint Loss to smooth out inter-frame differences. Finally, in the inference stage, we inject the content features of the source object into the editing branch through a two-branch structure (editing branch and reconstruction branch). With Edit-Your-Motion, users can edit the motion of objects in the source video to generate more exciting and diverse videos. Comprehensive qualitative experiments, quantitative experiments and user preference studies demonstrate that Edit-Your-Motion performs better than other methods.
Diffusion models have shown remarkable performance in image generation in recent years. However, due to a quadratic increase in memory during generating ultra-high-resolution images (e.g. 4096*4096), the resolution of generated images is often limited to 1024*1024. In this work. we propose a unidirectional block attention mechanism that can adaptively adjust the memory overhead during the inference process and handle global dependencies. Building on this module, we adopt the DiT structure for upsampling and develop an infinite super-resolution model capable of upsampling images of various shapes and resolutions. Comprehensive experiments show that our model achieves SOTA performance in generating ultra-high-resolution images in both machine and human evaluation. Compared to commonly used UNet structures, our model can save more than 5x memory when generating 4096*4096 images. The project URL is //github.com/THUDM/Inf-DiT.
The generative model has made significant advancements in the creation of realistic videos, which causes security issues. However, this emerging risk has not been adequately addressed due to the absence of a benchmark dataset for AI-generated videos. In this paper, we first construct a video dataset using advanced diffusion-based video generation algorithms with various semantic contents. Besides, typical video lossy operations over network transmission are adopted to generate degraded samples. Then, by analyzing local and global temporal defects of current AI-generated videos, a novel detection framework by adaptively learning local motion information and global appearance variation is constructed to expose fake videos. Finally, experiments are conducted to evaluate the generalization and robustness of different spatial and temporal domain detection methods, where the results can serve as the baseline and demonstrate the research challenge for future studies.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (at a rate of up to 50 characters per second). We apply our iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.