亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Person re-identification (Person ReID) is a challenging task due to the large variations in camera viewpoint, lighting, resolution, and human pose. Recently, with the advancement of deep learning technologies, the performance of Person ReID has been improved swiftly. Feature extraction and feature matching are two crucial components in the training and deployment stages of Person ReID. However, many existing Person ReID methods have measure inconsistency between the training stage and the deployment stage, and they couple magnitude and orientation information of feature vectors in feature representation. Meanwhile, traditional triplet loss methods focus on samples within a mini-batch and lack knowledge of global feature distribution. To address these issues, we propose a novel homocentric hypersphere embedding scheme to decouple magnitude and orientation information for both feature and weight vectors, and reformulate classification loss and triplet loss to their angular versions and combine them into an angular discriminative loss. We evaluate our proposed method extensively on the widely used Person ReID benchmarks, including Market1501, CUHK03 and DukeMTMC-ReID. Our method demonstrates leading performance on all datasets.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · INFORMS · state-of-the-art · Branch · 表征學習 ·
2018 年 12 月 13 日

Person re-identification (PReID) has received increasing attention due to it is an important part in intelligent surveillance. Recently, many state-of-the-art methods on PReID are part-based deep models. Most of them focus on learning the part feature representation of person body in horizontal direction. However, the feature representation of body in vertical direction is usually ignored. Besides, the spatial information between these part features and the different feature channels is not considered. In this study, we introduce a multi-branches deep model for PReID. Specifically, the model consists of five branches. Among the five branches, two of them learn the local feature with spatial information from horizontal or vertical orientations, respectively. The other one aims to learn interdependencies knowledge between different feature channels generated by the last convolution layer. The remains of two other branches are identification and triplet sub-networks, in which the discriminative global feature and a corresponding measurement can be learned simultaneously. All the five branches can improve the representation learning. We conduct extensive comparative experiments on three PReID benchmarks including CUHK03, Market-1501 and DukeMTMC-reID. The proposed deep framework outperforms many state-of-the-art in most cases.

Person re-identification is being widely used in the forensic, and security and surveillance system, but person re-identification is a challenging task in real life scenario. Hence, in this work, a new feature descriptor model has been proposed using a multilayer framework of Gaussian distribution model on pixel features, which include color moments, color space values and Schmid filter responses. An image of a person usually consists of distinct body regions, usually with differentiable clothing followed by local colors and texture patterns. Thus, the image is evaluated locally by dividing the image into overlapping regions. Each region is further fragmented into a set of local Gaussians on small patches. A global Gaussian encodes, these local Gaussians for each region creating a multi-level structure. Hence, the global picture of a person is described by local level information present in it, which is often ignored. Also, we have analyzed the efficiency of earlier metric learning methods on this descriptor. The performance of the descriptor is evaluated on four public available challenging datasets and the highest accuracy achieved on these datasets are compared with similar state-of-the-arts, which demonstrate the superior performance.

Person Re-Identification (ReID) refers to the task of verifying the identity of a pedestrian observed from non-overlapping surveillance cameras views. Recently, it has been validated that re-ranking could bring extra performance improvements in person ReID. However, the current re-ranking approaches either require feedbacks from users or suffer from burdensome computation cost. In this paper, we propose to exploit a density-adaptive kernel technique to perform efficient and effective re-ranking for person ReID. Specifically, we present two simple yet effective re-ranking methods, termed inverse Density-Adaptive Kernel based Re-ranking (inv-DAKR) and bidirectional Density-Adaptive Kernel based Re-ranking (bi-DAKR), which are based on a smooth kernel function with a density-adaptive parameter. Experiments on six benchmark data sets confirm that our proposals are effective and efficient.

Deep convolutional neural networks (CNNs) have demonstrated dominant performance in person re-identification (Re-ID). Existing CNN based methods utilize global average pooling (GAP) to aggregate intermediate convolutional features for Re-ID. However, this strategy only considers the first-order statistics of local features and treats local features at different locations equally important, leading to sub-optimal feature representation. To deal with these issues, we propose a novel \emph{weighted bilinear coding} (WBC) model for local feature aggregation in CNN networks to pursue more representative and discriminative feature representations. In specific, bilinear coding is used to encode the channel-wise feature correlations to capture richer feature interactions. Meanwhile, a weighting scheme is applied on the bilinear coding to adaptively adjust the weights of local features at different locations based on their importance in recognition, further improving the discriminability of feature aggregation. To handle the spatial misalignment issue, we use a salient part net to derive salient body parts, and apply the WBC model on each part. The final representation, formed by concatenating the WBC eoncoded features of each part, is both discriminative and resistant to spatial misalignment. Experiments on three benchmarks including Market-1501, DukeMTMC-reID and CUHK03 evidence the favorable performance of our method against other state-of-the-art methods.

Despite the remarkable recent progress, person Re-identification (Re-ID) approaches are still suffering from the failure cases where the discriminative body parts are missing. To mitigate such cases, we propose a simple yet effective Horizontal Pyramid Matching (HPM) approach to fully exploit various partial information of a given person, so that correct person candidates can be still identified even if some key parts are missing. Within the HPM, we make the following contributions to produce a more robust feature representation for the Re-ID task: 1) we learn to classify using partial feature representations at different horizontal pyramid scales, which successfully enhance the discriminative capabilities of various person parts; 2) we exploit average and max pooling strategies to account for person-specific discriminative information in a global-local manner; 3) we introduce a novel horizontal erasing operation during training to further resist the problem of missing parts and boost the robustness of feature representations. Extensive experiments are conducted on three popular benchmarks including Market-1501, DukeMTMC-reID and CUHK03. We achieve mAP scores of 83.1%, 74.5% and 59.7% on these benchmarks, which are the new state-of-the-arts.

Person re-identification (ReID) aims at matching persons across different views/scenes. In addition to accuracy, the matching efficiency has received more and more attention because of demanding applications using large-scale data. Several binary coding based methods have been proposed for efficient ReID, which either learn projections to map high-dimensional features to compact binary codes, or directly adopt deep neural networks by simply inserting an additional fully-connected layer with tanh-like activations. However, the former approach requires time-consuming hand-crafted feature extraction and complicated (discrete) optimizations; the latter lacks the necessary discriminative information greatly due to the straightforward activation functions. In this paper, we propose a simple yet effective framework for efficient ReID inspired by the recent advances in adversarial learning. Specifically, instead of learning explicit projections or adding fully-connected mapping layers, the proposed Adversarial Binary Coding (ABC) framework guides the extraction of binary codes implicitly and effectively. The discriminability of the extracted codes is further enhanced by equipping the ABC with a deep triplet network for the ReID task. More importantly, the ABC and triplet network are simultaneously optimized in an end-to-end manner. Extensive experiments on three large-scale ReID benchmarks demonstrate the superiority of our approach over the state-of-the-art methods.

In recent years, a growing body of research has focused on the problem of person re-identification (re-id). The re-id techniques attempt to match the images of pedestrians from disjoint non-overlapping camera views. A major challenge of re-id is the serious intra-class variations caused by changing viewpoints. To overcome this challenge, we propose a deep neural network-based framework which utilizes the view information in the feature extraction stage. The proposed framework learns a view-specific network for each camera view with a cross-view Euclidean constraint (CV-EC) and a cross-view center loss (CV-CL). We utilize CV-EC to decrease the margin of the features between diverse views and extend the center loss metric to a view-specific version to better adapt the re-id problem. Moreover, we propose an iterative algorithm to optimize the parameters of the view-specific networks from coarse to fine. The experiments demonstrate that our approach significantly improves the performance of the existing deep networks and outperforms the state-of-the-art methods on the VIPeR, CUHK01, CUHK03, SYSU-mReId, and Market-1501 benchmarks.

Existing person re-identification (re-id) methods either assume the availability of well-aligned person bounding box images as model input or rely on constrained attention selection mechanisms to calibrate misaligned images. They are therefore sub-optimal for re-id matching in arbitrarily aligned person images potentially with large human pose variations and unconstrained auto-detection errors. In this work, we show the advantages of jointly learning attention selection and feature representation in a Convolutional Neural Network (CNN) by maximising the complementary information of different levels of visual attention subject to re-id discriminative learning constraints. Specifically, we formulate a novel Harmonious Attention CNN (HA-CNN) model for joint learning of soft pixel attention and hard regional attention along with simultaneous optimisation of feature representations, dedicated to optimise person re-id in uncontrolled (misaligned) images. Extensive comparative evaluations validate the superiority of this new HA-CNN model for person re-id over a wide variety of state-of-the-art methods on three large-scale benchmarks including CUHK03, Market-1501, and DukeMTMC-ReID.

Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.

In recent years, person re-identification (re-id) catches great attention in both computer vision community and industry. In this paper, we propose a new framework for person re-identification with a triplet-based deep similarity learning using convolutional neural networks (CNNs). The network is trained with triplet input: two of them have the same class labels and the other one is different. It aims to learn the deep feature representation, with which the distance within the same class is decreased, while the distance between the different classes is increased as much as possible. Moreover, we trained the model jointly on six different datasets, which differs from common practice - one model is just trained on one dataset and tested also on the same one. However, the enormous number of possible triplet data among the large number of training samples makes the training impossible. To address this challenge, a double-sampling scheme is proposed to generate triplets of images as effective as possible. The proposed framework is evaluated on several benchmark datasets. The experimental results show that, our method is effective for the task of person re-identification and it is comparable or even outperforms the state-of-the-art methods.

北京阿比特科技有限公司