With the development of the Internet of Vehicles (IoV), vehicle wireless communication poses serious cybersecurity challenges. Faulty information, such as fake vehicle positions and speeds sent by surrounding vehicles, could cause vehicle collisions, traffic jams, and even casualties. Additionally, private vehicle data leakages, such as vehicle trajectory and user account information, may damage user property and security. Therefore, achieving a cyberattack-defense scheme in the IoV system with faulty data saturation is necessary. This paper proposes a Federated Learning-based Vehicle Trajectory Prediction Algorithm against Cyberattacks (FL-TP) to address the above problems. The FL-TP is intensively trained and tested using a publicly available Vehicular Reference Misbehavior (VeReMi) dataset with five types of cyberattacks: constant, constant offset, random, random offset, and eventual stop. The results show that the proposed FL-TP algorithm can improve cyberattack detection and trajectory prediction by up to 6.99% and 54.86%, respectively, under the maximum cyberattack permeability scenarios compared with benchmark methods.
With the rapid evolution of the Internet of Things, many real-world applications utilize heterogeneously connected sensors to capture time-series information. Edge-based machine learning (ML) methodologies are often employed to analyze locally collected data. However, a fundamental issue across data-driven ML approaches is distribution shift. It occurs when a model is deployed on a data distribution different from what it was trained on, and can substantially degrade model performance. Additionally, increasingly sophisticated deep neural networks (DNNs) have been proposed to capture spatial and temporal dependencies in multi-sensor time series data, requiring intensive computational resources beyond the capacity of today's edge devices. While brain-inspired hyperdimensional computing (HDC) has been introduced as a lightweight solution for edge-based learning, existing HDCs are also vulnerable to the distribution shift challenge. In this paper, we propose DOMINO, a novel HDC learning framework addressing the distribution shift problem in noisy multi-sensor time-series data. DOMINO leverages efficient and parallel matrix operations on high-dimensional space to dynamically identify and filter out domain-variant dimensions. Our evaluation on a wide range of multi-sensor time series classification tasks shows that DOMINO achieves on average 2.04% higher accuracy than state-of-the-art (SOTA) DNN-based domain generalization techniques, and delivers 7.83x faster training and 26.94x faster inference. More importantly, DOMINO performs notably better when learning from partially labeled and highly imbalanced data, providing 10.93x higher robustness against hardware noises than SOTA DNNs.
Deep neural networks (DNNs) are increasingly being used as controllers in reactive systems. However, DNNs are highly opaque, which renders it difficult to explain and justify their actions. To mitigate this issue, there has been a surge of interest in explainable AI (XAI) techniques, capable of pinpointing the input features that caused the DNN to act as it did. Existing XAI techniques typically face two limitations: (i) they are heuristic, and do not provide formal guarantees that the explanations are correct; and (ii) they often apply to ``one-shot'' systems, where the DNN is invoked independently of past invocations, as opposed to reactive systems. Here, we begin bridging this gap, and propose a formal DNN-verification-based XAI technique for reasoning about multi-step, reactive systems. We suggest methods for efficiently calculating succinct explanations, by exploiting the system's transition constraints in order to curtail the search space explored by the underlying verifier. We evaluate our approach on two popular benchmarks from the domain of automated navigation; and observe that our methods allow the efficient computation of minimal and minimum explanations, significantly outperforming the state of the art. We also demonstrate that our methods produce formal explanations that are more reliable than competing, non-verification-based XAI techniques.
With the rapid development of the Internet of Things (IoT) and the rise of 5G communication networks and automatic driving, millimeter wave (mmWave) sensing is emerging and starts impacting our life and workspace. mmWave sensing can sense humans and objects in a contactless way, providing fine-grained sensing ability. In the past few years, many mmWave sensing techniques have been proposed and applied in various human sensing applications (e.g., human localization, gesture recognition, and vital monitoring). We discover the need of a comprehensive survey to summarize the technology, platforms and applications of mmWave-based human sensing. In this survey, we first present the mmWave hardware platforms and some key techniques of mmWave sensing. We then provide a comprehensive review of existing mmWave-based human sensing works. Specifically, we divide existing works into four categories according to the sensing granularity: human tracking and localization, motion recognition, biometric measurement and human imaging. Finally, we discuss the potential research challenges and present future directions in this area.
In 2020, the U.S. Department of Defense officially disclosed a set of ethical principles to guide the use of Artificial Intelligence (AI) technologies on future battlefields. Despite stark differences, there are core similarities between the military and medical service. Warriors on battlefields often face life-altering circumstances that require quick decision-making. Medical providers experience similar challenges in a rapidly changing healthcare environment, such as in the emergency department or during surgery treating a life-threatening condition. Generative AI, an emerging technology designed to efficiently generate valuable information, holds great promise. As computing power becomes more accessible and the abundance of health data, such as electronic health records, electrocardiograms, and medical images, increases, it is inevitable that healthcare will be revolutionized by this technology. Recently, generative AI has captivated the research community, leading to debates about its application in healthcare, mainly due to concerns about transparency and related issues. Meanwhile, concerns about the potential exacerbation of health disparities due to modeling biases have raised notable ethical concerns regarding the use of this technology in healthcare. However, the ethical principles for generative AI in healthcare have been understudied, and decision-makers often fail to consider the significance of generative AI. In this paper, we propose GREAT PLEA ethical principles, encompassing governance, reliability, equity, accountability, traceability, privacy, lawfulness, empathy, and autonomy, for generative AI in healthcare. We aim to proactively address the ethical dilemmas and challenges posed by the integration of generative AI in healthcare.
Wireless short-packet communications pose challenges to the security and reliability of the transmission. Besides, the proactive warder compounds these challenges, who detects and interferes with the potential transmission. An extra jamming channel is introduced by the proactive warder compared with the passive one, resulting in the inapplicability of analytical methods and results in exsiting works. Thus, effective system design schemes are required for short-packet communications against the proactive warder. To address this issue, we consider the analysis and design of covert and reliable transmissions for above systems. Specifically, to investigate the reliable and covert performance of the system, detection error probability at the warder and decoding error probability at the receiver are derived, which is affected by both the transmit power and the jamming power. Furthermore, to maximize the effective throughput, an optimization framework is proposed under reliability and covertness constraints. Numerical results verify the accuracy of analytical results and the feasibility of the optimization framework. It is shown that the tradeoff between transmission reliability and covertness is changed by the proactive warder compared with the passive one. Besides, it is shown that longer blocklength is always beneficial to improve the throughput for systems with optimized transmission rates. But when transmission rates are fixed, the blocklength should be carefully designed since the maximum one is not optimal in this case.
Non-deterministic Finite Automata (NFA) represent regular languages concisely, increasing their appeal for applications such as word recognition. This paper proposes a new approach to generate NFA from an interaction language such as UML Sequence Diagrams or Message Sequence Charts. Via an operational semantics, we generate a NFA from a set of interactions reachable using the associated execution relation. In addition, by applying simplifications on reachable interactions to merge them, it is possible to obtain reduced NFA without relying on costly NFA reduction techniques. Experimental results regarding NFA generation and their application in trace analysis are also presented.
The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
With the rapid growth of knowledge bases (KBs), question answering over knowledge base, a.k.a. KBQA has drawn huge attention in recent years. Most of the existing KBQA methods follow so called encoder-compare framework. They map the question and the KB facts to a common embedding space, in which the similarity between the question vector and the fact vectors can be conveniently computed. This, however, inevitably loses original words interaction information. To preserve more original information, we propose an attentive recurrent neural network with similarity matrix based convolutional neural network (AR-SMCNN) model, which is able to capture comprehensive hierarchical information utilizing the advantages of both RNN and CNN. We use RNN to capture semantic-level correlation by its sequential modeling nature, and use an attention mechanism to keep track of the entities and relations simultaneously. Meanwhile, we use a similarity matrix based CNN with two-directions pooling to extract literal-level words interaction matching utilizing CNNs strength of modeling spatial correlation among data. Moreover, we have developed a new heuristic extension method for entity detection, which significantly decreases the effect of noise. Our method has outperformed the state-of-the-arts on SimpleQuestion benchmark in both accuracy and efficiency.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.