亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Submodular function minimization (SFM) and matroid intersection are fundamental discrete optimization problems with applications in many fields. It is well known that both of these can be solved making $\mathrm{poly}(N)$ queries to a relevant oracle (evaluation oracle for SFM and rank oracle for matroid intersection), where $N$ denotes the universe size. However, all known polynomial query algorithms are highly adaptive, requiring at least $N$ rounds of querying the oracle. A natural question is whether these can be efficiently solved in a highly parallel manner, namely, with $\mathrm{poly}(N)$ queries using only poly-logarithmic rounds of adaptivity. An important step towards understanding the adaptivity needed for efficient parallel SFM was taken recently in the work of Balkanski and Singer who showed that any SFM algorithm making $\mathrm{poly}(N)$ queries necessarily requires $\Omega(\log N/\log \log N)$ rounds. This left open the possibility of efficient SFM algorithms in poly-logarithmic rounds. For matroid intersection, even the possibility of a constant round, $\mathrm{poly}(N)$ query algorithm was not hitherto ruled out. In this work, we prove that any, possibly randomized, algorithm for submodular function minimization or matroid intersection making $\mathrm{poly}(N)$ queries requires $\tilde{\Omega}\left(N^{1/3}\right)$ rounds of adaptivity. In fact, we show a polynomial lower bound on the number of rounds of adaptivity even for algorithms that make at most $2^{N^{1-\delta}}$ queries, for any constant $\delta> 0$. Therefore, even though SFM and matroid intersection are efficiently solvable, they are not highly parallelizable in the oracle model.

相關內容

甲骨(gu)(gu)(gu)文公司(si),全稱甲骨(gu)(gu)(gu)文股份有限公司(si)(甲骨(gu)(gu)(gu)文軟(ruan)件系統有限公司(si)),是全球最大的(de)企業級軟(ruan)件公司(si),總(zong)部(bu)位(wei)于美國(guo)加(jia)利福尼亞州的(de)紅木灘。1989年正式進(jin)入中國(guo)市場。2013年,甲骨(gu)(gu)(gu)文已(yi)超越(yue) IBM ,成為繼 Microsoft 后全球第二(er)大軟(ruan)件公司(si)。

We investigate two fundamental questions intersecting coding theory and combinatorial geometry, with emphasis on their connections. These are the problem of computing the asymptotic density of MRD codes in the rank metric, and the Critical Problem for combinatorial geometries by Crapo and Rota. Using methods from semifield theory, we derive two lower bounds for the density function of full-rank, square MRD codes. The first bound is sharp when the matrix size is a prime number and the underlying field is sufficiently large, while the second bound applies to the binary field. We then take a new look at the Critical Problem for combinatorial geometries, approaching it from a qualitative, often asymptotic, viewpoint. We illustrate the connection between this very classical problem and that of computing the asymptotic density of MRD codes. Finally, we study the asymptotic density of some special families of codes in the rank metric, including the symmetric, alternating and Hermitian ones. In particular, we show that the optimal codes in these three contexts are sparse.

We show that solution to the Hermite-Pad\'{e} type I approximation problem leads in a natural way to a subclass of solutions of the Hirota (discrete Kadomtsev-Petviashvili) system and of its adjoint linear problem. Our result explains the appearence of various ingredients of the integrable systems theory in application to multiple orthogonal polynomials, numerical algorthms, random matrices, and in other branches of mathematical physics and applied mathematics where the Hermite-Pad\'{e} approximation problem is relevant. We present also the geometric algorithm, based on the notion of Desargues maps, of construction of solutions of the problem in the projective space over the field of rational functions. As a byproduct we obtain the corresponding generalization of the Wynn recurrence. We isolate the boundary data of the Hirota system which provide solutions to Hermite-Pad\'{e} problem showing that the corresponding reduction lowers dimensionality of the system. In particular, we obtain certain equations which, in addition to the known ones given by Paszkowski, can be considered as direct analogs of the Frobenius identities. We study the place of the reduced system within the integrability theory, which results in finding multidimensional (in the sense of number of variables) extension of the discrete-time Toda chain equations.

Given an $n$-point metric space $(\mathcal{X},d)$ where each point belongs to one of $m=O(1)$ different categories or groups and a set of integers $k_1, \ldots, k_m$, the fair Max-Min diversification problem is to select $k_i$ points belonging to category $i\in [m]$, such that the minimum pairwise distance between selected points is maximized. The problem was introduced by Moumoulidou et al. [ICDT 2021] and is motivated by the need to down-sample large data sets in various applications so that the derived sample achieves a balance over diversity, i.e., the minimum distance between a pair of selected points, and fairness, i.e., ensuring enough points of each category are included. We prove the following results: 1. We first consider general metric spaces. We present a randomized polynomial time algorithm that returns a factor $2$-approximation to the diversity but only satisfies the fairness constraints in expectation. Building upon this result, we present a $6$-approximation that is guaranteed to satisfy the fairness constraints up to a factor $1-\epsilon$ for any constant $\epsilon$. We also present a linear time algorithm returning an $m+1$ approximation with exact fairness. The best previous result was a $3m-1$ approximation. 2. We then focus on Euclidean metrics. We first show that the problem can be solved exactly in one dimension. For constant dimensions, categories and any constant $\epsilon>0$, we present a $1+\epsilon$ approximation algorithm that runs in $O(nk) + 2^{O(k)}$ time where $k=k_1+\ldots+k_m$. We can improve the running time to $O(nk)+ poly(k)$ at the expense of only picking $(1-\epsilon) k_i$ points from category $i\in [m]$. Finally, we present algorithms suitable to processing massive data sets including single-pass data stream algorithms and composable coresets for the distributed processing.

Motivated by applications to the theory of rank-metric codes, we study the problem of estimating the number of common complements of a family of subspaces over a finite field in terms of the cardinality of the family and its intersection structure. We derive upper and lower bounds for this number, along with their asymptotic versions as the field size tends to infinity. We then use these bounds to describe the general behaviour of common complements with respect to sparseness and density, showing that the decisive property is whether or not the number of spaces to be complemented is negligible with respect to the field size. By specializing our results to matrix spaces, we obtain upper and lower bounds for the number of MRD codes in the rank metric. In particular, we answer an open question in coding theory, proving that MRD codes are sparse for all parameter sets as the field size grows, with only very few exceptions. We also investigate the density of MRD codes as their number of columns tends to infinity, obtaining a new asymptotic bound. Using properties of the Euler function from number theory, we then show that our bound improves on known results for most parameter sets. We conclude the paper by establishing general structural properties of the density function of rank-metric codes.

We study the off-policy evaluation (OPE) problem in an infinite-horizon Markov decision process with continuous states and actions. We recast the $Q$-function estimation into a special form of the nonparametric instrumental variables (NPIV) estimation problem. We first show that under one mild condition the NPIV formulation of $Q$-function estimation is well-posed in the sense of $L^2$-measure of ill-posedness with respect to the data generating distribution, bypassing a strong assumption on the discount factor $\gamma$ imposed in the recent literature for obtaining the $L^2$ convergence rates of various $Q$-function estimators. Thanks to this new well-posed property, we derive the first minimax lower bounds for the convergence rates of nonparametric estimation of $Q$-function and its derivatives in both sup-norm and $L^2$-norm, which are shown to be the same as those for the classical nonparametric regression (Stone, 1982). We then propose a sieve two-stage least squares estimator and establish its rate-optimality in both norms under some mild conditions. Our general results on the well-posedness and the minimax lower bounds are of independent interest to study not only other nonparametric estimators for $Q$-function but also efficient estimation on the value of any target policy in off-policy settings.

The commonly quoted error rates for QMC integration with an infinite low discrepancy sequence is $O(n^{-1}\log(n)^r)$ with $r=d$ for extensible sequences and $r=d-1$ otherwise. Such rates hold uniformly over all $d$ dimensional integrands of Hardy-Krause variation one when using $n$ evaluation points. Implicit in those bounds is that for any sequence of QMC points, the integrand can be chosen to depend on $n$. In this paper we show that rates with any $r<(d-1)/2$ can hold when $f$ is held fixed as $n\to\infty$. This is accomplished following a suggestion of Erich Novak to use some unpublished results of Trojan from the 1980s as given in the information based complexity monograph of Traub, Wasilkowski and Wo\'zniakowski. The proof is made by applying a technique of Roth with the theorem of Trojan. The proof is non constructive and we do not know of any integrand of bounded variation in the sense of Hardy and Krause for which the QMC error exceeds $(\log n)^{1+\epsilon}/n$ for infinitely many $n$ when using a digital sequence such as one of Sobol's. An empirical search when $d=2$ for integrands designed to exploit known weaknesses in certain point sets showed no evidence that $r>1$ is needed. An example with $d=3$ and $n$ up to $2^{100}$ might possibly require $r>1$.

Join query evaluation with ordering is a fundamental data processing task in relational database management systems. SQL and custom graph query languages such as Cypher offer this functionality by allowing users to specify the order via the ORDER BY clause. In many scenarios, the users also want to see the first $k$ results quickly (expressed by the LIMIT clause), but the value of $k$ is not predetermined as user queries are arriving in an online fashion. Recent work has made considerable progress in identifying optimal algorithms for ranked enumeration of join queries that do not contain any projections. In this paper, we initiate the study of the problem of enumerating results in ranked order for queries with projections. Our main result shows that for any acyclic query, it is possible to obtain a near-linear (in the size of the database) delay algorithm after only a linear time preprocessing step for two important ranking functions: sum and lexicographic ordering. For a practical subset of acyclic queries known as star queries, we show an even stronger result that allows a user to obtain a smooth tradeoff between faster answering time guarantees using more preprocessing time. Our results are also extensible to queries containing cycles and unions. We also perform a comprehensive experimental evaluation to demonstrate that our algorithms, which are simple to implement, improve up to three orders of magnitude in the running time over state-of-the-art algorithms implemented within open-source RDBMS and specialized graph databases.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.

北京阿比特科技有限公司