亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adversarial attacks on graphs have posed a major threat to the robustness of graph machine learning (GML) models. Naturally, there is an ever-escalating arms race between attackers and defenders. However, the strategies behind both sides are often not fairly compared under the same and realistic conditions. To bridge this gap, we present the Graph Robustness Benchmark (GRB) with the goal of providing a scalable, unified, modular, and reproducible evaluation for the adversarial robustness of GML models. GRB standardizes the process of attacks and defenses by 1) developing scalable and diverse datasets, 2) modularizing the attack and defense implementations, and 3) unifying the evaluation protocol in refined scenarios. By leveraging the GRB pipeline, the end-users can focus on the development of robust GML models with automated data processing and experimental evaluations. To support open and reproducible research on graph adversarial learning, GRB also hosts public leaderboards across different scenarios. As a starting point, we conduct extensive experiments to benchmark baseline techniques. GRB is open-source and welcomes contributions from the community. Datasets, codes, leaderboards are available at //cogdl.ai/grb/home.

相關內容

Learning invariant representations is an important requirement when training machine learning models that are driven by spurious correlations in the datasets. These spurious correlations, between input samples and the target labels, wrongly direct the neural network predictions resulting in poor performance on certain groups, especially the minority groups. Robust training against these spurious correlations requires the knowledge of group membership for every sample. Such a requirement is impractical in situations where the data labeling efforts for minority or rare groups are significantly laborious or where the individuals comprising the dataset choose to conceal sensitive information. On the other hand, the presence of such data collection efforts results in datasets that contain partially labeled group information. Recent works have tackled the fully unsupervised scenario where no labels for groups are available. Thus, we aim to fill the missing gap in the literature by tackling a more realistic setting that can leverage partially available sensitive or group information during training. First, we construct a constraint set and derive a high probability bound for the group assignment to belong to the set. Second, we propose an algorithm that optimizes for the worst-off group assignments from the constraint set. Through experiments on image and tabular datasets, we show improvements in the minority group's performance while preserving overall aggregate accuracy across groups.

Large-scale pre-trained language models have achieved tremendous success across a wide range of natural language understanding (NLU) tasks, even surpassing human performance. However, recent studies reveal that the robustness of these models can be challenged by carefully crafted textual adversarial examples. While several individual datasets have been proposed to evaluate model robustness, a principled and comprehensive benchmark is still missing. In this paper, we present Adversarial GLUE (AdvGLUE), a new multi-task benchmark to quantitatively and thoroughly explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks. In particular, we systematically apply 14 textual adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations. Our findings are summarized as follows. (i) Most existing adversarial attack algorithms are prone to generating invalid or ambiguous adversarial examples, with around 90% of them either changing the original semantic meanings or misleading human annotators as well. Therefore, we perform a careful filtering process to curate a high-quality benchmark. (ii) All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy. We hope our work will motivate the development of new adversarial attacks that are more stealthy and semantic-preserving, as well as new robust language models against sophisticated adversarial attacks. AdvGLUE is available at //adversarialglue.github.io.

Vertical collaborative learning system also known as vertical federated learning (VFL) system has recently become prominent as a concept to process data distributed across many individual sources without the need to centralize it. Multiple participants collaboratively train models based on their local data in a privacy-preserving manner. To date, VFL has become a de facto solution to securely learn a model among organizations, allowing knowledge to be shared without compromising privacy of any individual organizations. Despite the prosperous development of VFL systems, we find that certain inputs of a participant, named adversarial dominating inputs (ADIs), can dominate the joint inference towards the direction of the adversary's will and force other (victim) participants to make negligible contributions, losing rewards that are usually offered regarding the importance of their contributions in collaborative learning scenarios. We conduct a systematic study on ADIs by first proving their existence in typical VFL systems. We then propose gradient-based methods to synthesize ADIs of various formats and exploit common VFL systems. We further launch greybox fuzz testing, guided by the resiliency score of "victim" participants, to perturb adversary-controlled inputs and systematically explore the VFL attack surface in a privacy-preserving manner. We conduct an in-depth study on the influence of critical parameters and settings in synthesizing ADIs. Our study reveals new VFL attack opportunities, promoting the identification of unknown threats before breaches and building more secure VFL systems.

This work explores the reproducibility of CFGAN. CFGAN and its family of models (TagRec, MTPR, and CRGAN) learn to generate personalized and fake-but-realistic rankings of preferences for top-N recommendations by using previous interactions. This work successfully replicates the results published in the original paper and discusses the impact of certain differences between the CFGAN framework and the model used in the original evaluation. The absence of random noise and the use of real user profiles as condition vectors leaves the generator prone to learn a degenerate solution in which the output vector is identical to the input vector, therefore, behaving essentially as a simple autoencoder. The work further expands the experimental analysis comparing CFGAN against a selection of simple and well-known properly optimized baselines, observing that CFGAN is not consistently competitive against them despite its high computational cost. To ensure the reproducibility of these analyses, this work describes the experimental methodology and publishes all datasets and source code.

Chemistry research has both high material and computational costs to conduct experiments. Institutions thus consider chemical data to be valuable and there have been few efforts to construct large public datasets for machine learning. Another challenge is that different intuitions are interested in different classes of molecules, creating heterogeneous data that cannot be easily joined by conventional distributed training. In this work, we introduce federated heterogeneous molecular learning to address these challenges. Federated learning allows end-users to build a global model collaboratively while keeping the training data distributed over isolated clients. Due to the lack of related research, we first simulate a heterogeneous federated learning benchmark (FedChem) by jointly performing scaffold splitting and latent Dirichlet allocation on existing datasets for heterogeneously distributed client data. Our results on FedChem show that significant learning challenges arise when working with heterogeneous molecules across clients. We then propose a method to alleviate the problem, namely Federated Learning by Instance reweighTing (FLIT(+)). FLIT(+) can align the local training across heterogeneous clients by improving the performance for uncertain samples. Comprehensive experiments conducted on our new benchmark FedChem validate the advantages of this method over other federated learning schemes. FedChem should enable a new type of collaboration for improving AI in chemistry that mitigates concerns about valuable chemical data.

Deep learning on graphs has attracted significant interests recently. However, most of the works have focused on (semi-) supervised learning, resulting in shortcomings including heavy label reliance, poor generalization, and weak robustness. To address these issues, self-supervised learning (SSL), which extracts informative knowledge through well-designed pretext tasks without relying on manual labels, has become a promising and trending learning paradigm for graph data. Different from SSL on other domains like computer vision and natural language processing, SSL on graphs has an exclusive background, design ideas, and taxonomies. Under the umbrella of graph self-supervised learning, we present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data. We construct a unified framework that mathematically formalizes the paradigm of graph SSL. According to the objectives of pretext tasks, we divide these approaches into four categories: generation-based, auxiliary property-based, contrast-based, and hybrid approaches. We further conclude the applications of graph SSL across various research fields and summarize the commonly used datasets, evaluation benchmark, performance comparison and open-source codes of graph SSL. Finally, we discuss the remaining challenges and potential future directions in this research field.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

Graph neural networks (GNNs) are widely used in many applications. However, their robustness against adversarial attacks is criticized. Prior studies show that using unnoticeable modifications on graph topology or nodal features can significantly reduce the performances of GNNs. It is very challenging to design robust graph neural networks against poisoning attack and several efforts have been taken. Existing work aims at reducing the negative impact from adversarial edges only with the poisoned graph, which is sub-optimal since they fail to discriminate adversarial edges from normal ones. On the other hand, clean graphs from similar domains as the target poisoned graph are usually available in the real world. By perturbing these clean graphs, we create supervised knowledge to train the ability to detect adversarial edges so that the robustness of GNNs is elevated. However, such potential for clean graphs is neglected by existing work. To this end, we investigate a novel problem of improving the robustness of GNNs against poisoning attacks by exploring clean graphs. Specifically, we propose PA-GNN, which relies on a penalized aggregation mechanism that directly restrict the negative impact of adversarial edges by assigning them lower attention coefficients. To optimize PA-GNN for a poisoned graph, we design a meta-optimization algorithm that trains PA-GNN to penalize perturbations using clean graphs and their adversarial counterparts, and transfers such ability to improve the robustness of PA-GNN on the poisoned graph. Experimental results on four real-world datasets demonstrate the robustness of PA-GNN against poisoning attacks on graphs.

The recent popularity of deep neural networks (DNNs) has generated a lot of research interest in performing DNN-related computation efficiently. However, the primary focus is usually very narrow and limited to (i) inference -- i.e. how to efficiently execute already trained models and (ii) image classification networks as the primary benchmark for evaluation. Our primary goal in this work is to break this myopic view by (i) proposing a new benchmark for DNN training, called TBD (TBD is short for Training Benchmark for DNNs), that uses a representative set of DNN models that cover a wide range of machine learning applications: image classification, machine translation, speech recognition, object detection, adversarial networks, reinforcement learning, and (ii) by performing an extensive performance analysis of training these different applications on three major deep learning frameworks (TensorFlow, MXNet, CNTK) across different hardware configurations (single-GPU, multi-GPU, and multi-machine). TBD currently covers six major application domains and eight different state-of-the-art models. We present a new toolchain for performance analysis for these models that combines the targeted usage of existing performance analysis tools, careful selection of new and existing metrics and methodologies to analyze the results, and utilization of domain specific characteristics of DNN training. We also build a new set of tools for memory profiling in all three major frameworks; much needed tools that can finally shed some light on precisely how much memory is consumed by different data structures (weights, activations, gradients, workspace) in DNN training. By using our tools and methodologies, we make several important observations and recommendations on where the future research and optimization of DNN training should be focused.

北京阿比特科技有限公司