Self-supervised learning (SSL) for RGB images has achieved significant success, yet there is still limited research on SSL for infrared images, primarily due to three prominent challenges: 1) the lack of a suitable large-scale infrared pre-training dataset, 2) the distinctiveness of non-iconic infrared images rendering common pre-training tasks like masked image modeling (MIM) less effective, and 3) the scarcity of fine-grained textures making it particularly challenging to learn general image features. To address these issues, we construct a Multi-Scene Infrared Pre-training (MSIP) dataset comprising 178,756 images, and introduce object-sensitive random RoI cropping, an image preprocessing method, to tackle the challenge posed by non-iconic images. To alleviate the impact of weak textures on feature learning, we propose a pre-training paradigm called Pre-training with ADapter (PAD), which uses adapters to learn domain-specific features while freezing parameters pre-trained on ImageNet to retain the general feature extraction capability. This new paradigm is applicable to any transformer-based SSL method. Furthermore, to achieve more flexible coordination between pre-trained and newly-learned features in different layers and patches, a patchwise-scale adapter with dynamically learnable scale factors is introduced. Extensive experiments on three downstream tasks show that PAD, with only 1.23M pre-trainable parameters, outperforms other baseline paradigms including continual full pre-training on MSIP. Our code and dataset are available at //github.com/casiatao/PAD.
Self-supervised learning (SSL) has been incorporated into many state-of-the-art models in various domains, where SSL defines pretext tasks based on unlabeled datasets to learn contextualized and robust representations. Recently, SSL has been a new trend in exploring the representation learning capability in the realm of tabular data, which is more challenging due to not having explicit relations for learning descriptive representations. This survey aims to systematically review and summarize the recent progress and challenges of SSL for non-sequential tabular data (SSL4NS-TD). We first present a formal definition of NS-TD and clarify its correlation to related studies. Then, these approaches are categorized into three groups -- predictive learning, contrastive learning, and hybrid learning, with their motivations and strengths of representative methods within each direction. On top of this, application issues of SSL4NS-TD are presented, including automatic data engineering, cross-table transferability, and domain knowledge integration. In addition, we elaborate on existing benchmarks and datasets for NS-TD applications to discuss the performance of existing tabular models. Finally, we discuss the challenges of SSL4NS-TD and provide potential directions for future research. We expect our work to be useful in terms of encouraging more research on lowering the barrier to entry SSL for the tabular domain and improving the foundations for implicit tabular data.
The advances of deep learning (DL) have paved the way for automatic software vulnerability repair approaches, which effectively learn the mapping from the vulnerable code to the fixed code. Nevertheless, existing DL-based vulnerability repair methods face notable limitations: 1) they struggle to handle lengthy vulnerable code, 2) they treat code as natural language texts, neglecting its inherent structure, and 3) they do not tap into the valuable expert knowledge present in the expert system. To address this, we propose VulMaster, a Transformer-based neural network model that excels at generating vulnerability repairs by comprehensively understanding the entire vulnerable code, irrespective of its length. This model also integrates diverse information, encompassing vulnerable code structures and expert knowledge from the CWE system. We evaluated VulMaster on a real-world C/C++ vulnerability repair dataset comprising 1,754 projects with 5,800 vulnerable functions. The experimental results demonstrated that VulMaster exhibits substantial improvements compared to the learning-based state-of-the-art vulnerability repair approach. Specifically, VulMaster improves the EM, BLEU, and CodeBLEU scores from 10.2\% to 20.0\%, 21.3\% to 29.3\%, and 32.5\% to 40.9\%, respectively.
Federated learning (FL) is widely employed for collaborative training on decentralized data but faces challenges like data, system, and model heterogeneity. This prompted the emergency of model-heterogeneous personalized federated learning (MHPFL). However, concerns persist regarding data and model privacy, model performance, communication, and computational costs in current MHPFL methods. To tackle these concerns, we propose a novel model-heterogeneous personalized Federated learning algorithm (FedMoE) with the Mixture of Experts (MoE), renowned for enhancing large language models (LLMs). It assigns a shared homogeneous small feature extractor and a local gating network for each client's local heterogeneous large model. (1) During local training, the local heterogeneous model's feature extractor acts as a local expert for personalized feature (representation) extraction, while the shared homogeneous small feature extractor serves as a global expert for generalized feature extraction. The local gating network produces personalized weights for extracted representations from both experts on each data sample. The three models form a local heterogeneous MoE. The weighted mixed representation fuses global generalized and local personalized features and is processed by the local heterogeneous large model's header with personalized prediction information for output. The MoE and prediction header are updated synchronously. (2) The trained local homogeneous small feature extractors are sent to the server for cross-client information fusion via aggregation. Briefly, FedMoE first enhances local model personalization at a fine-grained data level while supporting model heterogeneity.
Adapting the Diffusion Probabilistic Model (DPM) for direct image super-resolution is wasteful, given that a simple Convolutional Neural Network (CNN) can recover the main low-frequency content. Therefore, we present ResDiff, a novel Diffusion Probabilistic Model based on Residual structure for Single Image Super-Resolution (SISR). ResDiff utilizes a combination of a CNN, which restores primary low-frequency components, and a DPM, which predicts the residual between the ground-truth image and the CNN predicted image. In contrast to the common diffusion-based methods that directly use LR images to guide the noise towards HR space, ResDiff utilizes the CNN's initial prediction to direct the noise towards the residual space between HR space and CNN-predicted space, which not only accelerates the generation process but also acquires superior sample quality. Additionally, a frequency-domain-based loss function for CNN is introduced to facilitate its restoration, and a frequency-domain guided diffusion is designed for DPM on behalf of predicting high-frequency details. The extensive experiments on multiple benchmark datasets demonstrate that ResDiff outperforms previous diffusion based methods in terms of shorter model convergence time, superior generation quality, and more diverse samples.
Despite recent significant strides achieved by diffusion-based Text-to-Image (T2I) models, current systems are still less capable of ensuring decent compositional generation aligned with text prompts, particularly for the multi-object generation. This work illuminates the fundamental reasons for such misalignment, pinpointing issues related to low attention activation scores and mask overlaps. While previous research efforts have individually tackled these issues, we assert that a holistic approach is paramount. Thus, we propose two novel objectives, the Separate loss and the Enhance loss, that reduce object mask overlaps and maximize attention scores, respectively. Our method diverges from conventional test-time-adaptation techniques, focusing on finetuning critical parameters, which enhances scalability and generalizability. Comprehensive evaluations demonstrate the superior performance of our model in terms of image realism, text-image alignment, and adaptability, notably outperforming prominent baselines. Ultimately, this research paves the way for T2I diffusion models with enhanced compositional capacities and broader applicability.
Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks. The most prominent advantage of SSL is that it reduces the dependence on labeled data. Based on the pre-training and fine-tuning strategy, even a small amount of labeled data can achieve high performance. Compared with many published self-supervised surveys on computer vision and natural language processing, a comprehensive survey for time series SSL is still missing. To fill this gap, we review current state-of-the-art SSL methods for time series data in this article. To this end, we first comprehensively review existing surveys related to SSL and time series, and then provide a new taxonomy of existing time series SSL methods. We summarize these methods into three categories: generative-based, contrastive-based, and adversarial-based. All methods can be further divided into ten subcategories. To facilitate the experiments and validation of time series SSL methods, we also summarize datasets commonly used in time series forecasting, classification, anomaly detection, and clustering tasks. Finally, we present the future directions of SSL for time series analysis.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.
Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.