亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) has recently emerged as a distributed machine learning paradigm for systems with limited and intermittent connectivity. This paper presents the new context brought to FL by satellite constellations, where the connectivity patterns are significantly different from the ones observed in conventional terrestrial FL. The focus is on large constellations in low earth orbit (LEO), where each satellites participates in a data-driven FL task using a locally stored dataset. This scenario is motivated by the trend towards mega constellations of interconnected small satellites in LEO and the integration of artificial intelligence in satellites. We propose a classification of satellite FL based on the communication capabilities of the satellites, the constellation design, and the location of the parameter server. A comprehensive overview of the current state-of-the-art in this field is provided and the unique challenges and opportunities of satellite FL are discussed. Finally, we outline several open research directions for FL in satellite constellations and present some future perspectives on this topic.

相關內容

Federated learning, which allows multiple client devices in a network to jointly train a machine learning model without direct exposure of clients' data, is an emerging distributed learning technique due to its nature of privacy preservation. However, it has been found that models trained with federated learning usually have worse performance than their counterparts trained in the standard centralized learning mode, especially when the training data is imbalanced. In the context of federated learning, data imbalance may occur either locally one one client device, or globally across many devices. The complexity of different types of data imbalance has posed challenges to the development of federated learning technique, especially considering the need of relieving data imbalance issue and preserving data privacy at the same time. Therefore, in the literature, many attempts have been made to handle class imbalance in federated learning. In this paper, we present a detailed review of recent advancements along this line. We first introduce various types of class imbalance in federated learning, after which we review existing methods for estimating the extent of class imbalance without the need of knowing the actual data to preserve data privacy. After that, we discuss existing methods for handling class imbalance in FL, where the advantages and disadvantages of the these approaches are discussed. We also summarize common evaluation metrics for class imbalanced tasks, and point out potential future directions.

Satisfiability Modulo the Theory of Nonlinear Real Arithmetic, SMT(NRA) for short, concerns the satisfiability of polynomial formulas, which are quantifier-free Boolean combinations of polynomial equations and inequalities with integer coefficients and real variables. In this paper, we propose a local search algorithm for a special subclass of SMT(NRA), where all constraints are strict inequalities. An important fact is that, given a polynomial formula with $n$ variables, the zero level set of the polynomials in the formula decomposes the $n$-dimensional real space into finitely many components (cells) and every polynomial has constant sign in each cell. The key point of our algorithm is a new operation based on real root isolation, called cell-jump, which updates the current assignment along a given direction such that the assignment can `jump' from one cell to another. One cell-jump may adjust the values of several variables while traditional local search operations, such as flip for SAT and critical move for SMT(LIA), only change that of one variable. We also design a two-level operation selection to balance the success rate and efficiency. Furthermore, our algorithm can be easily generalized to a wider subclass of SMT(NRA) where polynomial equations linear with respect to some variable are allowed. Experiments show the algorithm is competitive with state-of-the-art SMT solvers, and performs particularly well on those formulas with high-degree polynomials.

Over-the-air federated edge learning (Air-FEEL) is a communication-efficient framework for distributed machine learning using training data distributed at edge devices. This framework enables all edge devices to transmit model updates simultaneously over the entire available bandwidth, allowing for over-the-air aggregation. A one-bit digital over-the-air aggregation (OBDA) scheme has been recently proposed, featuring one-bit gradient quantization at edge devices and majority-voting based decoding at the edge server. However, the low-resolution one-bit gradient quantization slows down the model convergence and leads to performance degradation. On the other hand, the aggregation errors caused by fading channels in Air-FEEL is still remained to be solved. To address these issues, we propose the error-feedback one-bit broadband digital aggregation (EFOBDA) and an optimized power control policy. To this end, we first provide a theoretical analysis to evaluate the impact of error feedback on the convergence of FL with EFOBDA. The analytical results show that, by setting an appropriate feedback strength, EFOBDA is comparable to the Air-FEEL without quantization, thus enhancing the performance of OBDA. Then, we further introduce a power control policy by maximizing the convergence rate under instantaneous power constraints. The convergence analysis and optimized power control policy are verified by the experiments, which show that the proposed scheme achieves significantly faster convergence and higher test accuracy in image classification tasks compared with the one-bit quantization scheme without error feedback or optimized power control policy.

Connected and Automated Vehicles (CAVs) are one of the emerging technologies in the automotive domain that has the potential to alleviate the issues of accidents, traffic congestion, and pollutant emissions, leading to a safe, efficient, and sustainable transportation system. Machine learning-based methods are widely used in CAVs for crucial tasks like perception, motion planning, and motion control, where machine learning models in CAVs are solely trained using the local vehicle data, and the performance is not certain when exposed to new environments or unseen conditions. Federated learning (FL) is an effective solution for CAVs that enables a collaborative model development with multiple vehicles in a distributed learning framework. FL enables CAVs to learn from a wide range of driving environments and improve their overall performance while ensuring the privacy and security of local vehicle data. In this paper, we review the progress accomplished by researchers in applying FL to CAVs. A broader view of the various data modalities and algorithms that have been implemented on CAVs is provided. Specific applications of FL are reviewed in detail, and an analysis of the challenges and future scope of research are presented.

Following the research agenda initiated by Munoz & Vassilvitskii [1] and Lykouris & Vassilvitskii [2] on learning-augmented online algorithms for classical online optimization problems, in this work, we consider the Online Facility Location problem under this framework. In Online Facility Location (OFL), demands arrive one-by-one in a metric space and must be (irrevocably) assigned to an open facility upon arrival, without any knowledge about future demands. We present an online algorithm for OFL that exploits potentially imperfect predictions on the locations of the optimal facilities. We prove that the competitive ratio decreases smoothly from sublogarithmic in the number of demands to constant, as the error, i.e., the total distance of the predicted locations to the optimal facility locations, decreases towards zero. We complement our analysis with a matching lower bound establishing that the dependence of the algorithm's competitive ratio on the error is optimal, up to constant factors. Finally, we evaluate our algorithm on real world data and compare our learning augmented approach with the current best online algorithm for the problem.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

北京阿比特科技有限公司