亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, driven by advancements in Multimodal Large Language Models (MLLMs), Vision Language Action Models (VLAMs) are being proposed to achieve better performance in open-vocabulary scenarios for robotic manipulation tasks. Since manipulation tasks involve direct interaction with the physical world, ensuring robustness and safety during the execution of this task is always a very critical issue. In this paper, by synthesizing current safety research on MLLMs and the specific application scenarios of the manipulation task in the physical world, we comprehensively evaluate VLAMs in the face of potential physical threats. Specifically, we propose the Physical Vulnerability Evaluating Pipeline (PVEP) that can incorporate as many visual modal physical threats as possible for evaluating the physical robustness of VLAMs. The physical threats in PVEP specifically include Out-of-Distribution, Typography-based Visual Prompts, and Adversarial Patch Attacks. By comparing the performance fluctuations of VLAMs before and after being attacked, we provide generalizable Analyses of how VLAMs respond to different physical security threats. Our project page is in this link: //chaducheng.github.io/Manipulat-Facing-Threats/.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 表示 · 掩碼 · 表示學習 ·
2024 年 12 月 16 日

This work asks: with abundant, unlabeled real faces, how to learn a robust and transferable facial representation that boosts various face security tasks with respect to generalization performance? We make the first attempt and propose a self-supervised pretraining framework to learn fundamental representations of real face images, FSFM, that leverages the synergy between masked image modeling (MIM) and instance discrimination (ID). We explore various facial masking strategies for MIM and present a simple yet powerful CRFR-P masking, which explicitly forces the model to capture meaningful intra-region consistency and challenging inter-region coherency. Furthermore, we devise the ID network that naturally couples with MIM to establish underlying local-to-global correspondence via tailored self-distillation. These three learning objectives, namely 3C, empower encoding both local features and global semantics of real faces. After pretraining, a vanilla ViT serves as a universal vision foundation model for downstream face security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forgery detection. Extensive experiments on 10 public datasets demonstrate that our model transfers better than supervised pretraining, visual and facial self-supervised learning arts, and even outperforms task-specialized SOTA methods.

Large Language Models (LLMs) are known to be vulnerable to backdoor attacks, where triggers embedded in poisoned samples can maliciously alter LLMs' behaviors. In this paper, we move beyond attacking LLMs and instead examine backdoor attacks through the novel lens of natural language explanations. Specifically, we leverage LLMs' generative capabilities to produce human-readable explanations for their decisions, enabling direct comparisons between explanations for clean and poisoned samples. Our results show that backdoored models produce coherent explanations for clean inputs but diverse and logically flawed explanations for poisoned data, a pattern consistent across classification and generation tasks for different backdoor attacks. Further analysis reveals key insights into the explanation generation process. At the token level, explanation tokens associated with poisoned samples only appear in the final few transformer layers. At the sentence level, attention dynamics indicate that poisoned inputs shift attention away from the original input context during explanation generation. These findings enhance our understanding of backdoor mechanisms in LLMs and present a promising framework for detecting vulnerabilities through explainability.

Recent advancements in Large Vision Language Models (LVLMs) have revolutionized how machines understand and generate textual responses based on visual inputs, yet they often produce "hallucinatory" outputs that misinterpret visual information, posing challenges in reliability and trustworthiness. We propose RITUAL, a simple decoding method that reduces hallucinations by leveraging randomly transformed images as complementary inputs during decoding, adjusting the output probability distribution without additional training or external models. Our key insight is that random transformations expose the model to diverse visual perspectives, enabling it to correct misinterpretations that lead to hallucinations. Specifically, when a model hallucinates based on the original image, the transformed images -- altered in aspects such as orientation, scale, or color -- provide alternative viewpoints that help recalibrate the model's predictions. By integrating the probability distributions from both the original and transformed images, RITUAL effectively reduces hallucinations. To further improve reliability and address potential instability from arbitrary transformations, we introduce RITUAL+, an extension that selects image transformations based on self-feedback from the LVLM. Instead of applying transformations randomly, RITUAL+ uses the LVLM to evaluate and choose transformations that are most beneficial for reducing hallucinations in a given context. This self-adaptive approach mitigates the potential negative impact of certain transformations on specific tasks, ensuring more consistent performance across different scenarios. Experiments demonstrate that RITUAL and RITUAL+ significantly reduce hallucinations across several object hallucination benchmarks.

Traditional greedy tokenization methods have been a critical step in Natural Language Processing (NLP), influencing how text is converted into tokens and directly impacting model performance. While subword tokenizers like Byte-Pair Encoding (BPE) are widely used, questions remain about their optimality across model scales and languages. In this work, we demonstrate through extensive experiments that an optimal BPE configuration significantly reduces token count compared to greedy segmentation, yielding improvements in token-saving percentages and performance benefits, particularly for smaller models. We evaluate tokenization performance across various intrinsic and extrinsic tasks, including generation and classification. Our findings suggest that compression-optimized tokenization strategies could provide substantial advantages for multilingual and low-resource language applications, highlighting a promising direction for further research and inclusive NLP.

Despite rapid advancements in TTS models, a consistent and robust human evaluation framework is still lacking. For example, MOS tests fail to differentiate between similar models, and CMOS's pairwise comparisons are time-intensive. The MUSHRA test is a promising alternative for evaluating multiple TTS systems simultaneously, but in this work we show that its reliance on matching human reference speech unduly penalises the scores of modern TTS systems that can exceed human speech quality. More specifically, we conduct a comprehensive assessment of the MUSHRA test, focusing on its sensitivity to factors such as rater variability, listener fatigue, and reference bias. Based on our extensive evaluation involving 492 human listeners across Hindi and Tamil we identify two primary shortcomings: (i) reference-matching bias, where raters are unduly influenced by the human reference, and (ii) judgement ambiguity, arising from a lack of clear fine-grained guidelines. To address these issues, we propose two refined variants of the MUSHRA test. The first variant enables fairer ratings for synthesized samples that surpass human reference quality. The second variant reduces ambiguity, as indicated by the relatively lower variance across raters. By combining these approaches, we achieve both more reliable and more fine-grained assessments. We also release MANGO, a massive dataset of 246,000 human ratings, the first-of-its-kind collection for Indian languages, aiding in analyzing human preferences and developing automatic metrics for evaluating TTS systems.

Multimodal Large Language Models (MLLMs) exhibit promising advancements across various tasks, yet they still encounter significant trustworthiness issues. Prior studies apply Split Conformal Prediction (SCP) in language modeling to construct prediction sets with statistical guarantees. However, these methods typically rely on internal model logits or are restricted to multiple-choice settings, which hampers their generalizability and adaptability in dynamic, open-ended environments. In this paper, we introduce TRON, a two-step framework for risk control and assessment, applicable to any MLLM that supports sampling in both open-ended and closed-ended scenarios. TRON comprises two main components: (1) a novel conformal score to sample response sets of minimum size, and (2) a nonconformity score to identify high-quality responses based on self-consistency theory, controlling the error rates by two specific risk levels. Furthermore, we investigate semantic redundancy in prediction sets within open-ended contexts for the first time, leading to a promising evaluation metric for MLLMs based on average set size. Our comprehensive experiments across four Video Question-Answering (VideoQA) datasets utilizing eight MLLMs show that TRON achieves desired error rates bounded by two user-specified risk levels. Additionally, deduplicated prediction sets maintain adaptiveness while being more efficient and stable for risk assessment under different risk levels.

Tool-calling has changed Large Language Model (LLM) applications by integrating external tools, significantly enhancing their functionality across diverse tasks. However, this integration also introduces new security vulnerabilities, particularly in the tool scheduling mechanisms of LLM, which have not been extensively studied. To fill this gap, we present ToolCommander, a novel framework designed to exploit vulnerabilities in LLM tool-calling systems through adversarial tool injection. Our framework employs a well-designed two-stage attack strategy. Firstly, it injects malicious tools to collect user queries, then dynamically updates the injected tools based on the stolen information to enhance subsequent attacks. These stages enable ToolCommander to execute privacy theft, launch denial-of-service attacks, and even manipulate business competition by triggering unscheduled tool-calling. Notably, the ASR reaches 91.67% for privacy theft and hits 100% for denial-of-service and unscheduled tool calling in certain cases. Our work demonstrates that these vulnerabilities can lead to severe consequences beyond simple misuse of tool-calling systems, underscoring the urgent need for robust defensive strategies to secure LLM Tool-calling systems.

Recent applications of Privacy Enhancing Technologies (PETs) reveal a paradox. PETs aim to alleviate power asymmetries, but can actually entrench the infrastructural power of companies implementing them vis-\`a-vis other public and private organisations. We investigate whether and how this contradiction manifests with an empirical study of Amazon's cloud connectivity service called Sidewalk. In 2021, Amazon remotely updated Echo and Ring devices in consumers' homes, to transform them into Sidewalk "gateways". Compatible Internet of Things (IoT) devices, called "endpoints", can connect to an associated "Application Server" in Amazon Web Services (AWS) through these gateways. We find that Sidewalk is not just a connectivity service, but an extension of Amazon's cloud infrastructure as a software production environment for IoT manufacturers. PETs play a prominent role in this pursuit: we observe a two-faceted PET paradox. First, suppressing some information flows allows Amazon to promise narrow privacy guarantees to owners of Echo and Ring devices when "flipping" them into gateways. Once flipped, these gateways constitute a crowdsourced connectivity infrastructure that covers 90% of the US population and expands their AWS offerings. We show how novel information flows, enabled by Sidewalk connectivity, raise greater surveillance and competition concerns. Second, Amazon governs the implementation of these PETs, requiring manufacturers to adjust their device hardware, operating system and software; cloud use; factory lines; and organisational processes. Together, these changes turn manufacturers' endpoints into accessories of Amazon's computational infrastructure; further entrenching Amazon's infrastructural power. We argue that power analyses undergirding PET design should go beyond analysing information flows. We propose future steps for policy and tech research.

Recently, Vision Large Language Models (VLLMs) integrated with vision encoders have shown promising performance in vision understanding. The key of VLLMs is to encode visual content into sequences of visual tokens, enabling VLLMs to simultaneously process both visual and textual content. However, understanding videos, especially long videos, remain a challenge to VLLMs as the number of visual tokens grows rapidly when encoding videos, resulting in the risk of exceeding the context window of VLLMs and introducing heavy computation burden. To restrict the number of visual tokens, existing VLLMs either: (1) uniformly downsample videos into a fixed number of frames or (2) reducing the number of visual tokens encoded from each frame. We argue the former solution neglects the rich temporal cue in videos and the later overlooks the spatial details in each frame. In this work, we present Balanced-VLLM (B-VLLM): a novel VLLM framework that aims to effectively leverage task relevant spatio-temporal cues while restricting the number of visual tokens under the VLLM context window length. At the core of our method, we devise a text-conditioned adaptive frame selection module to identify frames relevant to the visual understanding task. The selected frames are then de-duplicated using a temporal frame token merging technique. The visual tokens of the selected frames are processed through a spatial token sampling module and an optional spatial token merging strategy to achieve precise control over the token count. Experimental results show that B-VLLM is effective in balancing the number of frames and visual tokens in video understanding, yielding superior performance on various video understanding benchmarks. Our code is available at //github.com/zhuqiangLu/B-VLLM.

Diffusion Probability Models (DPMs) have made impressive advancements in various machine learning domains. However, achieving high-quality synthetic samples typically involves performing a large number of sampling steps, which impedes the possibility of real-time sample synthesis. Traditional accelerated sampling algorithms via knowledge distillation rely on pre-trained model weights and discrete time step scenarios, necessitating additional training sessions to achieve their goals. To address these issues, we propose the Catch-Up Distillation (CUD), which encourages the current moment output of the velocity estimation model ``catch up'' with its previous moment output. Specifically, CUD adjusts the original Ordinary Differential Equation (ODE) training objective to align the current moment output with both the ground truth label and the previous moment output, utilizing Runge-Kutta-based multi-step alignment distillation for precise ODE estimation while preventing asynchronous updates. Furthermore, we investigate the design space for CUDs under continuous time-step scenarios and analyze how to determine the suitable strategies. To demonstrate CUD's effectiveness, we conduct thorough ablation and comparison experiments on CIFAR-10, MNIST, and ImageNet-64. On CIFAR-10, we obtain a FID of 2.80 by sampling in 15 steps under one-session training and the new state-of-the-art FID of 3.37 by sampling in one step with additional training. This latter result necessitated only 620k iterations with a batch size of 128, in contrast to Consistency Distillation, which demanded 2100k iterations with a larger batch size of 256. Our code is released at //anonymous.4open.science/r/Catch-Up-Distillation-E31F.

北京阿比特科技有限公司