亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Under some regularity assumptions, we report an a priori error analysis of a dG scheme for the Poisson and Stokes flow problem in their dual mixed formulation. Both formulations satisfy a Babu\v{s}ka-Brezzi type condition within the space H(div) x L2. It is well known that the lowest order Crouzeix-Raviart element paired with piecewise constants satisfies such a condition on (broken) H1 x L2 spaces. In the present article, we use this pair. The continuity of the normal component is weakly imposed by penalizing jumps of the broken H(div) component. For the resulting methods, we prove well-posedness and convergence with constants independent of data and mesh size. We report error estimates in the methods natural norms and optimal local error estimates for the divergence error. In fact, our finite element solution shares for each triangle one DOF with the CR interpolant and the divergence is locally the best-approximation for any regularity. Numerical experiments support the findings and suggest that the other errors converge optimally even for the lowest regularity solutions and a crack-problem, as long as the crack is resolved by the mesh.

相關內容

Analytical understanding of how low-dimensional latent features reveal themselves in large-dimensional data is still lacking. We study this by defining a linear latent feature model with additive noise constructed from probabilistic matrices, and analytically and numerically computing the statistical distributions of pairwise correlations and eigenvalues of the correlation matrix. This allows us to resolve the latent feature structure across a wide range of data regimes set by the number of recorded variables, observations, latent features and the signal-to-noise ratio. We find a characteristic imprint of latent features in the distribution of correlations and eigenvalues and provide an analytic estimate for the boundary between signal and noise even in the absence of a clear spectral gap.

We show that the error probability of reconstructing kernel matrices from Random Fourier Features for the Gaussian kernel function is at most $\mathcal{O}(R^{2/3} \exp(-D))$, where $D$ is the number of random features and $R$ is the diameter of the data domain. We also provide an information-theoretic method-independent lower bound of $\Omega((1-\exp(-R^2)) \exp(-D))$. Compared to prior work, we are the first to show that the error probability for random Fourier features is independent of the dimensionality of data points. As applications of our theory, we obtain dimension-independent bounds for kernel ridge regression and support vector machines.

Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending ideas of Chebop2 [Townsend and Olver, J. Comput. Phys., 299 (2015)] to the three-dimensional setting utilizing expansions in tensorized polynomial bases. Solving the discretized PDE involves a linear system that can be recast as a linear tensor equation. Under suitable additional assumptions, the structure of these equations admits for an efficient solution via the blocked recursive solver [Chen and Kressner, Numer. Algorithms, 84 (2020)]. In the general case, when these assumptions are not satisfied, this solver is used as a preconditioner to speed up computations.

In this paper we propose a novel coupled poroelasticity-diffusion model for the formation of extracellular oedema and infectious myocarditis valid in large deformations, manifested as an interaction between interstitial flow and the immune-driven dynamics between leukocytes and pathogens. The governing partial differential equations are formulated in terms of skeleton displacement, fluid pressure, Lagrangian porosity, and the concentrations of pathogens and leukocytes. A five-field mixed-primal finite element scheme is proposed for the numerical approximation of the problem, and we provide the stability analysis for a simplified system emanating from linearisation. We also discuss the construction of an adequate, Schur complement based, nested preconditioner. The produced computational tests exemplify the properties of the new model and of the mixed schemes.

Multilevel methods are among the most efficient numerical methods for solving large-scale linear systems that arise from discretized partial differential equations. The fundamental module of such methods is a two-level procedure, which consists of compatible relaxation and coarse-level correction. Regarding two-level convergence theory, most previous works focus on the case of exact (Galerkin) coarse solver. In practice, however, it is often too costly to solve the Galerkin coarse-level system exactly when its size is relatively large. Compared with the exact case, the convergence theory of inexact two-level methods is of more practical significance, while it is still less developed in the literature, especially when nonlinear coarse solvers are used. In this paper, we establish a general framework for analyzing the convergence of inexact two-level methods, in which the coarse-level system is solved approximately by an inner iterative procedure. The framework allows us to use various (linear, nonlinear, deterministic, randomized, or hybrid) solvers in the inner iterations, as long as the corresponding accuracy estimates are available.

In this paper, we propose an eXtended Virtual Element Method (X-VEM) for two-dimensional linear elastic fracture. This approach, which is an extension of the standard Virtual Element Method (VEM), facilitates mesh-independent modeling of crack discontinuities and elastic crack-tip singularities on general polygonal meshes. For elastic fracture in the X-VEM, the standard virtual element space is augmented by additional basis functions that are constructed by multiplying standard virtual basis functions by suitable enrichment fields, such as asymptotic mixed-mode crack-tip solutions. The design of the X-VEM requires an extended projector that maps functions lying in the extended virtual element space onto a set spanned by linear polynomials and the enrichment fields. An efficient scheme to compute the mixed-mode stress intensity factors using the domain form of the interaction integral is described. The formulation permits integration of weakly singular functions to be performed over the boundary edges of the element. Numerical experiments are conducted on benchmark mixed-mode linear elastic fracture problems that demonstrate the sound accuracy and optimal convergence in energy of the proposed formulation.

In this work we undertake a thorough study of the non-asymptotic properties of the vanilla generative adversarial networks (GANs). We derive theoretical guarantees for the density estimation with GANs under a proper choice of the deep neural networks classes representing generators and discriminators. In particular, we prove that the resulting estimate converges to the true density $\mathsf{p}^*$ in terms of Jensen-Shannon (JS) divergence at the rate $(\log{n}/n)^{2\beta/(2\beta+d)}$ where $n$ is the sample size and $\beta$ determines the smoothness of $\mathsf{p}^*$. To the best of our knowledge, this is the first result in the literature on density estimation using vanilla GANs with JS convergence rates faster than $n^{-1/2}$ in the regime $\beta > d/2$. Moreover, we show that the obtained rate is minimax optimal (up to logarithmic factors) for the considered class of densities.

We consider the query complexity of finding a local minimum of a function defined on a graph, where at most $k$ rounds of interaction with the oracle are allowed. Rounds model parallel settings, where each query takes resources to complete and is executed on a separate processor. Thus the query complexity in $k$ rounds informs how many processors are needed to achieve a parallel time of $k$. We focus on the d-dimensional grid $[n]^d$, where the dimension $d$ is a constant, and consider two regimes for the number of rounds: constant and polynomial in n. We give algorithms and lower bounds that characterize the trade-off between the number of rounds of adaptivity and the query complexity of local search. When the number of rounds $k$ is constant, we show that the query complexity of local search in $k$ rounds is $\Theta\bigl(n^{\frac{d^{k+1} - d^k}{d^k - 1}}\bigl)$, for both deterministic and randomized algorithms. When the number of rounds is polynomial, i.e. $k = n^{\alpha}$ for $0 < \alpha < d/2$, the randomized query complexity is $\Theta\left(n^{d-1 - \frac{d-2}{d}\alpha}\right)$ for all $d \geq 5$. For $d=3$ and $d=4$, we show the same upper bound expression holds and give almost matching lower bounds. The local search analysis also enables us to characterize the query complexity of computing a Brouwer fixed point in rounds. Our proof technique for lower bounding the query complexity in rounds may be of independent interest as an alternative to the classical relational adversary method of Aaronson from the fully adaptive setting.

An improved Singleton-type upper bound is presented for the list decoding radius of linear codes, in terms of the code parameters [n,k,d] and the list size L. L-MDS codes are then defined as codes that attain this bound (under a slightly stronger notion of list decodability), with 1-MDS codes corresponding to ordinary linear MDS codes. Several properties of such codes are presented; in particular, it is shown that the 2-MDS property is preserved under duality. Finally, explicit constructions for 2-MDS codes are presented through generalized Reed-Solomon (GRS) codes.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

北京阿比特科技有限公司