We present Farm3D, a method for learning category-specific 3D reconstructors for articulated objects, relying solely on "free" virtual supervision from a pre-trained 2D diffusion-based image generator. Recent approaches can learn a monocular network that predicts the 3D shape, albedo, illumination, and viewpoint of any object occurrence, given a collection of single-view images of an object category. However, these approaches heavily rely on manually curated clean training data, which are expensive to obtain. We propose a framework that uses an image generator, such as Stable Diffusion, to generate synthetic training data that are sufficiently clean and do not require further manual curation, enabling the learning of such a reconstruction network from scratch. Additionally, we incorporate the diffusion model as a score to enhance the learning process. The idea involves randomizing certain aspects of the reconstruction, such as viewpoint and illumination, generating virtual views of the reconstructed 3D object, and allowing the 2D network to assess the quality of the resulting image, thus providing feedback to the reconstructor. Unlike work based on distillation, which produces a single 3D asset for each textual prompt, our approach yields a monocular reconstruction network capable of outputting a controllable 3D asset from any given image, whether real or generated, in a single forward pass in a matter of seconds. Our network can be used for analysis, including monocular reconstruction, or for synthesis, generating articulated assets for real-time applications such as video games.
Recently, multiple applications of machine learning have been introduced. They include various possibilities arising when image analysis methods are applied to, broadly understood, video streams. In this context, a novel tool, developed for academic educators to enhance the teaching process by automating, summarizing, and offering prompt feedback on conducting lectures, has been developed. The implemented prototype utilizes machine learning-based techniques to recognise selected didactic and behavioural teachers' features within lecture video recordings. Specifically, users (teachers) can upload their lecture videos, which are preprocessed and analysed using machine learning models. Next, users can view summaries of recognized didactic features through interactive charts and tables. Additionally, stored ML-based prediction results support comparisons between lectures based on their didactic content. In the developed application text-based models trained on lecture transcriptions, with enhancements to the transcription quality, by adopting an automatic speech recognition solution are applied. Furthermore, the system offers flexibility for (future) integration of new/additional machine-learning models and software modules for image and video analysis.
Decompilation aims to convert binary code to high-level source code, but traditional tools like Ghidra often produce results that are difficult to read and execute. Motivated by the advancements in Large Language Models (LLMs), we propose LLM4Decompile, the first and largest open-source LLM series (1.3B to 33B) trained to decompile binary code. We optimize the LLM training process and introduce the LLM4Decompile-End models to decompile binary directly. The resulting models significantly outperform GPT-4o and Ghidra on the HumanEval and ExeBench benchmarks by over 100%. Additionally, we improve the standard refinement approach to fine-tune the LLM4Decompile-Ref models, enabling them to effectively refine the decompiled code from Ghidra and achieve a further 16.2% improvement over the LLM4Decompile-End. LLM4Decompile demonstrates the potential of LLMs to revolutionize binary code decompilation, delivering remarkable improvements in readability and executability while complementing conventional tools for optimal results. Our code, dataset, and models are released at //github.com/albertan017/LLM4Decompile
Reinforcement learning from human feedback (RLHF) is a promising solution to align large language models (LLMs) more closely with human values. Off-policy preference optimization, where the preference data is obtained from other models, is widely adopted due to its cost efficiency and scalability. However, off-policy preference optimization often suffers from a distributional gap between the policy used for data collection and the target policy, leading to suboptimal optimization. In this paper, we propose a novel strategy to mitigate this problem by simulating on-policy learning with off-policy preference data. Our Weighted Preference Optimization (WPO) method adapts off-policy data to resemble on-policy data more closely by reweighting preference pairs according to their probability under the current policy. This method not only addresses the distributional gap problem but also enhances the optimization process without incurring additional costs. We validate our method on instruction following benchmarks including Alpaca Eval 2 and MT-bench. WPO not only outperforms Direct Preference Optimization (DPO) by up to 5.6% on Alpaca Eval 2 but also establishes a remarkable length-controlled winning rate against GPT-4-turbo of 48.6% based on Llama-3-8B-Instruct, making it the strongest 8B model on the leaderboard. We will release the code and models at //github.com/wzhouad/WPO.
We present TetSphere splatting, an explicit, Lagrangian representation for reconstructing 3D shapes with high-quality geometry. In contrast to conventional object reconstruction methods which predominantly use Eulerian representations, including both neural implicit (e.g., NeRF, NeuS) and explicit representations (e.g., DMTet), and often struggle with high computational demands and suboptimal mesh quality, TetSphere splatting utilizes an underused but highly effective geometric primitive -- tetrahedral meshes. This approach directly yields superior mesh quality without relying on neural networks or post-processing. It deforms multiple initial tetrahedral spheres to accurately reconstruct the 3D shape through a combination of differentiable rendering and geometric energy optimization, resulting in significant computational efficiency. Serving as a robust and versatile geometry representation, Tet-Sphere splatting seamlessly integrates into diverse applications, including single-view 3D reconstruction, image-/text-to-3D content generation. Experimental results demonstrate that TetSphere splatting outperforms existing representations, delivering faster optimization speed, enhanced mesh quality, and reliable preservation of thin structures.
Ontologies provide formal representation of knowledge shared within Semantic Web applications. Ontology learning involves the construction of ontologies from a given corpus. In the past years, ontology learning has traversed through shallow learning and deep learning methodologies, each offering distinct advantages and limitations in the quest for knowledge extraction and representation. A new trend of these approaches is relying on large language models (LLMs) to enhance ontology learning. This paper gives a review in approaches and challenges of ontology learning. It analyzes the methodologies and limitations of shallow-learning-based and deep-learning-based techniques for ontology learning, and provides comprehensive knowledge for the frontier work of using LLMs to enhance ontology learning. In addition, it proposes several noteworthy future directions for further exploration into the integration of LLMs with ontology learning tasks.
Large language models (LLMs) demonstrate outstanding performance in various tasks in machine learning and have thus become one of the most important workloads in today's computing landscape. However, deploying LLM inference poses challenges due to the high compute and memory requirements stemming from the enormous model size and the difficulty of running it in the integer pipelines. In this paper, we present Tender, an algorithm-hardware co-design solution that enables efficient deployment of LLM inference at low precision. Based on our analysis of outlier values in LLMs, we propose a decomposed quantization technique in which the scale factors of decomposed matrices are powers of two apart. The proposed scheme allows us to avoid explicit requantization (i.e., dequantization/quantization) when accumulating the partial sums from the decomposed matrices, with a minimal extension to the commodity tensor compute hardware. Our evaluation shows that Tender achieves higher accuracy and inference performance compared to the state-of-the-art methods while also being significantly less intrusive to the existing accelerators.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.