亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large gains in the rate of cache-aided broadcast communication are obtained using coded caching, but to obtain this most existing centralized coded caching schemes require that the files at the server be divisible into a large number of parts (this number is called subpacketization). In fact, most schemes require the subpacketization to be growing asymptotically as exponential in $\sqrt[\leftroot{-1}\uproot{1}r]{K}$ for some positive integer $r$ and $K$ being the number of users. On the other extreme, few schemes having subpacketization linear in $K$ are known; however, they require large number of users to exist, or they offer only little gain in the rate. In this work, we propose two new centralized coded caching schemes with low subpacketization and moderate rate gains utilizing projective geometries over finite fields. Both the schemes achieve the same asymptotic subpacketization, which is exponential in $O((\log K)^2)$ (thus improving on the $\sqrt[\leftroot{-1}\uproot{1}r]{K}$ exponent). The first scheme has a larger cache requirement but has at most a constant rate (with increasing $K$), while the second has small cache requirement but has a larger rate. As a special case of our second scheme, we get a new linear subpacketization scheme, which has a more flexible range of parameters than the existing linear subpacketization schemes. Extending our techniques, we also obtain low subpacketization schemes for other multi-receiver settings such as distributed computing and the cache-aided interference channel. We validate the performance of all our schemes via extensive numerical comparisons. For a special class of symmetric caching schemes with a given subpacketization level, we propose two new information theoretic lower bounds on the optimal rate of coded caching.

相關內容

Normalizing Flows (NFs) are universal density estimators based on Neural Networks. However, this universality is limited: the density's support needs to be diffeomorphic to a Euclidean space. In this paper, we propose a novel method to overcome this limitation without sacrificing universality. The proposed method inflates the data manifold by adding noise in the normal space, trains an NF on this inflated manifold, and, finally, deflates the learned density. Our main result provides sufficient conditions on the manifold and the specific choice of noise under which the corresponding estimator is exact. Our method has the same computational complexity as NFs and does not require computing an inverse flow. We also show that, if the embedding dimension is much larger than the manifold dimension, noise in the normal space can be well approximated by Gaussian noise. This allows using our method for approximating arbitrary densities on unknown manifolds provided that the manifold dimension is known.

The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation stating that arbitrarily long quantum computations can be performed with a polylogarithmic overhead provided the noise level is below a constant level. A recent work by Fawzi, Grospellier and Leverrier (FOCS 2018) building on a result by Gottesman (QIC 2013) has shown that the space overhead can be asymptotically reduced to a constant independent of the circuit provided we only consider circuits with a length bounded by a polynomial in the width. In this work, using a minimal model for quantum fault tolerance, we establish a general lower bound on the space overhead required to achieve fault tolerance. For any non-unitary qubit channel $\mathcal{N}$ and any quantum fault tolerance schemes against $\mathrm{i.i.d.}$ noise modeled by $\mathcal{N}$, we prove a lower bound of $\max\left\{\mathrm{Q}(\mathcal{N})^{-1}n,\alpha_\mathcal{N} \log T\right\}$ on the number of physical qubits, for circuits of length $T$ and width $n$. Here, $\mathrm{Q}(\mathcal{N})$ denotes the quantum capacity of $\mathcal{N}$ and $\alpha_\mathcal{N}>0$ is a constant only depending on the channel $\mathcal{N}$. In our model, we allow for qubits to be replaced by fresh ones during the execution of the circuit and we allow classical computation to be free and perfect. This improves upon results that assumed classical computations to be also affected by noise, and that sometimes did not allow for fresh qubits to be added. Along the way, we prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude damping noise resolving a conjecture by Ben-Or, Gottesman, and Hassidim (2013).

Random field models are mathematical structures used in the study of stochastic complex systems. In this paper, we compute the shape operator of Gaussian random field manifolds using the first and second fundamental forms (Fisher information matrices). Using Markov Chain Monte Carlo techniques, we simulate the dynamics of these random fields and compute the Gaussian curvature of the parametric space, analyzing how this quantity changes along phase transitions. During the simulation, we have observed an unexpected phenomenon that we called the \emph{curvature effect}, which indicates that a highly asymmetric geometric deformation happens in the underlying parametric space when there are significant increase/decrease in the system's entropy. This asymmetric pattern relates to the emergence of hysteresis, leading to an intrinsic arrow of time along the dynamics.

Phase-type (PH) distributions are a popular tool for the analysis of univariate risks in numerous actuarial applications. Their multivariate counterparts (MPH$^\ast$), however, have not seen such a proliferation, due to lack of explicit formulas and complicated estimation procedures. A simple construction of multivariate phase-type distributions -- mPH -- is proposed for the parametric description of multivariate risks, leading to models of considerable probabilistic flexibility and statistical tractability. The main idea is to start different Markov processes at the same state, and allow them to evolve independently thereafter, leading to dependent absorption times. By dimension augmentation arguments, this construction can be cast into the umbrella of MPH$^\ast$ class, but enjoys explicit formulas which the general specification lacks, including common measures of dependence. Moreover, it is shown that the class is still rich enough to be dense on the set of multivariate risks supported on the positive orthant, and it is the smallest known sub-class to have this property. In particular, the latter result provides a new short proof of the denseness of the MPH$^\ast$ class. In practice this means that the mPH class allows for modeling of bivariate risks with any given correlation or copula. We derive an EM algorithm for its statistical estimation, and illustrate it on bivariate insurance data. Extensions to more general settings are outlined.

Coded distributed computation has become common practice for performing gradient descent on large datasets to mitigate stragglers and other faults. This paper proposes a novel algorithm that encodes the partial derivatives themselves and furthermore optimizes the codes by performing lossy compression on the derivative codewords by maximizing the information contained in the codewords while minimizing the information between the codewords. The utility of this application of coding theory is a geometrical consequence of the observed fact in optimization research that noise is tolerable, sometimes even helpful, in gradient descent based learning algorithms since it helps avoid overfitting and local minima. This stands in contrast with much current conventional work on distributed coded computation which focuses on recovering all of the data from the workers. A second further contribution is that the low-weight nature of the coding scheme allows for asynchronous gradient updates since the code can be iteratively decoded; i.e., a worker's task can immediately be updated into the larger gradient. The directional derivative is always a linear function of the direction vectors; thus, our framework is robust since it can apply linear coding techniques to general machine learning frameworks such as deep neural networks.

The $p$-center problem (pCP) is a fundamental problem in location science, where we are given customer demand points and possible facility locations, and we want to choose $p$ of these locations to open a facility such that the maximum distance of any customer demand point to its closest open facility is minimized. State-of-the-art solution approaches of pCP use its connection to the set cover problem to solve pCP in an iterative fashion by repeatedly solving set cover problems. The classical textbook integer programming (IP) formulation of pCP is usually dismissed due to its size and bad linear programming (LP)-relaxation bounds. We present a novel solution approach that works on a new IP formulation that can be obtained by a projection from the classical formulation. The formulation is solved by means of branch-and-cut, where cuts for demand points are iteratively generated. Moreover, the formulation can be strengthened with combinatorial information to obtain a much tighter LP-relaxation. In particular, we present a novel way to use lower bound information to obtain stronger cuts. We show that the LP-relaxation bound of our strengthened formulation has the same strength as the best known bound in literature, which is based on a semi-relaxation. Finally, we also present a computational study on instances from the literature with up to more than 700000 customers and locations. Our solution algorithm is competitive with highly sophisticated set-cover-based solution algorithms, which depend on various components and parameters.

The low-rank matrix approximation problem is ubiquitous in computational mathematics. Traditionally, this problem is solved in spectral or Frobenius norms, where the accuracy of the approximation is related to the rate of decrease of the singular values of the matrix. However, recent results indicate that this requirement is not necessary for other norms. In this paper, we propose a method for solving the low-rank approximation problem in the Chebyshev norm, which is capable of efficiently constructing accurate approximations for matrices, whose singular values do not decrease or decrease slowly.

Second-order optimizers are thought to hold the potential to speed up neural network training, but due to the enormous size of the curvature matrix, they typically require approximations to be computationally tractable. The most successful family of approximations are Kronecker-Factored, block-diagonal curvature estimates (KFAC). Here, we combine tools from prior work to evaluate exact second-order updates with careful ablations to establish a surprising result: Due to its approximations, KFAC is not closely related to second-order updates, and in particular, it significantly outperforms true second-order updates. This challenges widely held believes and immediately raises the question why KFAC performs so well. We answer this question by showing that KFAC approximates a first-order algorithm, which performs gradient descent on neurons rather than weights. Finally, we show that this optimizer often improves over KFAC in terms of computational cost and data-efficiency.

Coded caching has been shown as a promissing method to reduce the network load in peak-traffic hours. In the coded caching literature, the notion of privacy is considered only against demands. On the motivation that multi-round transmissions almost appear everywhere in real communication systems, this paper formulates the coded caching problem with private demands and caches. Only one existing private caching scheme, which is based on introducing virtual users, can preserve the privacy of demands and caches simultaneously, but with an extremely large subpacketization exponential to the product of the numbers of users and files in the system. In order to reduce the subpacketization while satisfying the privacy constraint, we propose a novel approach which constructs private coded caching schemes through private information retrieval (PIR). Based on this approach, we propose novel schemes with private demands and caches which have a subpacketization level in the order exponential to $K$ (number of users) against $NK$ in the virtual user scheme where $N$ stands for the numbers of files. As a by-product, for the coded caching problem with private demands, a private coded caching scheme could be obtained from the proposed approach, which generally improves the memory-load tradeoff of the private coded caching scheme by Yan and Tuninetti.

Deep learning is the mainstream technique for many machine learning tasks, including image recognition, machine translation, speech recognition, and so on. It has outperformed conventional methods in various fields and achieved great successes. Unfortunately, the understanding on how it works remains unclear. It has the central importance to lay down the theoretic foundation for deep learning. In this work, we give a geometric view to understand deep learning: we show that the fundamental principle attributing to the success is the manifold structure in data, namely natural high dimensional data concentrates close to a low-dimensional manifold, deep learning learns the manifold and the probability distribution on it. We further introduce the concepts of rectified linear complexity for deep neural network measuring its learning capability, rectified linear complexity of an embedding manifold describing the difficulty to be learned. Then we show for any deep neural network with fixed architecture, there exists a manifold that cannot be learned by the network. Finally, we propose to apply optimal mass transportation theory to control the probability distribution in the latent space.

北京阿比特科技有限公司