亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The widespread use of Large Language Models (LLMs) in software engineering has intensified the need for improved model and resource efficiency. In particular, for neural code generation, LLMs are used to translate function/method signature and DocString to executable code. DocStrings which capture user re quirements for the code and used as the prompt for LLMs, often contains redundant information. Recent advancements in prompt compression have shown promising results in Natural Language Processing (NLP), but their applicability to code generation remains uncertain. Our empirical study show that the state-of-the-art prompt compression methods achieve only about 10% reduction, as further reductions would cause significant performance degradation. In our study, we propose a novel compression method, ShortenDoc, dedicated to DocString compression for code generation. Our extensive experiments on six code generation datasets, five open-source LLMs (1B to 10B parameters), and one closed-source LLM GPT-4o confirm that ShortenDoc achieves 25-40% compression while preserving the quality of generated code, outperforming other baseline methods at similar compression levels. The benefit of this research is to improve efficiency and reduce the cost while maintaining the quality of the generated code, especially when calling third-party APIs, and is able to reduce the token processing cost by 25-40%.

相關內容

代(dai)碼(Code)是(shi)專知網的一個(ge)重要知識資料文檔板(ban)塊,旨在(zai)整理收錄論文源代(dai)碼、復現代(dai)碼,經典工程代(dai)碼等,便于用戶(hu)查(cha)閱(yue)下載使用。

Code documentation is a critical aspect of software development, serving as a bridge between human understanding and machine-readable code. Beyond assisting developers in understanding and maintaining code, documentation also plays a critical role in automating various software engineering tasks, such as test oracle generation (TOG). In Java, Javadoc comments provide structured, natural language documentation embedded directly in the source code, typically detailing functionality, usage, parameters, return values, and exceptions. While prior research has utilized Javadoc comments in test oracle generation (TOG), there has not been a thorough investigation into their impact when combined with other contextual information, nor into identifying the most relevant components for generating correct and strong test oracles, or understanding their role in detecting real bugs. In this study, we dive deep into investigating the impact of Javadoc comments on TOG.

Understanding and extracting the grammar of a domain-specific language (DSL) is crucial for various software engineering tasks; however, manually creating these grammars is time-intensive and error-prone. This paper presents Kajal, a novel approach that automatically infers grammar from DSL code snippets by leveraging Large Language Models (LLMs) through prompt engineering and few-shot learning. Kajal dynamically constructs input prompts, using contextual information to guide the LLM in generating the corresponding grammars, which are iteratively refined through a feedback-driven approach. Our experiments show that Kajal achieves 60% accuracy with few-shot learning and 45% without it, demonstrating the significant impact of few-shot learning on the tool's effectiveness. This approach offers a promising solution for automating DSL grammar extraction, and future work will explore using smaller, open-source LLMs and testing on larger datasets to further validate Kajal's performance.

Large Language Models (LLMs) have become increasingly integral to enhancing developer productivity, particularly in code generation, comprehension, and repair tasks. However, fine-tuning these models with high-quality, real-world data is challenging due to privacy concerns and the lack of accessible, labeled datasets. In this paper, we present DialogAgent, an automated tool for generating synthetic training data that closely mimics real developer interactions within Integrated Development Environments (IDEs). DialogAgent enables the production of diverse, high-fidelity query-response pairs by simulating multi-turn dialogues and contextual behaviors observed in real-world programming scenarios. The tool significantly reduces the reliance on manual data generation, increasing efficiency by 4.8 times compared to traditional methods. Our experiments and online deployment demonstrate substantial improvements in model performance for code-related question-answering tasks: the acceptance rate of responses generated by our in-house model is improved by 33%, after training on synthesized data generated by DialogAgent.

The Go programming language has gained significant traction for developing software, especially in various infrastructure systems. Nonetheless, concurrency bugs have become a prevalent issue within Go, presenting a unique challenge due to the language's dual concurrency mechanisms-communicating sequential processes and shared memory. Detecting concurrency bugs and accurately classifying program executions as pass or fail presents an immense challenge, even for domain experts. We conducted a survey with expert developers at Bytedance that confirmed this challenge. Our work seeks to address the test oracle problem for Go programs, to automatically classify test executions as pass or fail. This problem has not been investigated in the literature for Go programs owing to its distinctive programming model. Our approach involves collecting both passing and failing execution traces from various subject Go programs. We capture a comprehensive array of execution events using the native Go execution tracer. Subsequently, we preprocess and encode these traces before training a transformer-based neural network to effectively classify the traces as either passing or failing. The evaluation of our approach encompasses 8 subject programs sourced from the GoBench repository. These subject programs are routinely used as benchmarks in an industry setting. Encouragingly, our test oracle, Go-Oracle, demonstrates high accuracies even when operating with a limited dataset, showcasing the efficacy and potential of our methodology. Developers at Bytedance strongly agreed that they would use the Go-Oracle tool over the current practice of manual inspections to classify tests for Go programs as pass or fail.

The use of large language models (LLMs) for qualitative analysis is gaining attention in various fields, including software engineering, where qualitative methods are essential for understanding human and social factors. This study aimed to investigate how LLMs are currently used in qualitative analysis and their potential applications in software engineering research, focusing on the benefits, limitations, and practices associated with their use. A systematic mapping study was conducted, analyzing 21 relevant studies to explore reported uses of LLMs for qualitative analysis. The findings indicate that LLMs are primarily used for tasks such as coding, thematic analysis, and data categorization, offering benefits like increased efficiency and support for new researchers. However, limitations such as output variability, challenges in capturing nuanced perspectives, and ethical concerns related to privacy and transparency were also identified. The study emphasizes the need for structured strategies and guidelines to optimize LLM use in qualitative research within software engineering, enhancing their effectiveness while addressing ethical considerations. While LLMs show promise in supporting qualitative analysis, human expertise remains crucial for interpreting data, and ongoing exploration of best practices will be vital for their successful integration into empirical software engineering research.

The rapid advancement of Generative AI (Gen AI) technologies, particularly tools like ChatGPT, is significantly impacting the labor market by reshaping job roles and skill requirements. This study examines the demand for ChatGPT-related skills in the U.S. labor market by analyzing job advertisements collected from major job platforms between May and December 2023. Using text mining and topic modeling techniques, we extracted and analyzed the Gen AI-related skills that employers are hiring for. Our analysis identified five distinct ChatGPT-related skill sets: general familiarity, creative content generation, marketing, advanced functionalities (such as prompt engineering), and product development. In addition, the study provides insights into job attributes such as occupation titles, degree requirements, salary ranges, and other relevant job characteristics. These findings highlight the increasing integration of Gen AI across various industries, emphasizing the growing need for both foundational knowledge and advanced technical skills. The study offers valuable insights into the evolving demands of the labor market, as employers seek candidates equipped to leverage generative AI tools to improve productivity, streamline processes, and drive innovation.

Graph Neural Networks (GNNs) are a class of deep learning-based methods for processing graph domain information. GNNs have recently become a widely used graph analysis method due to their superior ability to learn representations for complex graph data. However, due to privacy concerns and regulation restrictions, centralized GNNs can be difficult to apply to data-sensitive scenarios. Federated learning (FL) is an emerging technology developed for privacy-preserving settings when several parties need to train a shared global model collaboratively. Although several research works have applied FL to train GNNs (Federated GNNs), there is no research on their robustness to backdoor attacks. This paper bridges this gap by conducting two types of backdoor attacks in Federated GNNs: centralized backdoor attacks (CBA) and distributed backdoor attacks (DBA). Our experiments show that the DBA attack success rate is higher than CBA in almost all evaluated cases. For CBA, the attack success rate of all local triggers is similar to the global trigger even if the training set of the adversarial party is embedded with the global trigger. To further explore the properties of two backdoor attacks in Federated GNNs, we evaluate the attack performance for a different number of clients, trigger sizes, poisoning intensities, and trigger densities. Moreover, we explore the robustness of DBA and CBA against one defense. We find that both attacks are robust against the investigated defense, necessitating the need to consider backdoor attacks in Federated GNNs as a novel threat that requires custom defenses.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

北京阿比特科技有限公司