Differentially private algorithms protect individuals in data analysis scenarios by ensuring that there is only a weak correlation between the existence of the user in the data and the result of the analysis. Dynamic graph algorithms maintain the solution to a problem (e.g., a matching) on an evolving input, i.e., a graph where nodes or edges are inserted or deleted over time. They output the value of the solution after each update operation, i.e., continuously. We study (event-level and user-level) differentially private algorithms for graph problems under continual observation, i.e., differentially private dynamic graph algorithms. We present event-level private algorithms for partially dynamic counting-based problems such as triangle count that improve the additive error by a polynomial factor (in the length $T$ of the update sequence) on the state of the art, resulting in the first algorithms with additive error polylogarithmic in $T$. We also give $\varepsilon$-differentially private and partially dynamic algorithms for minimum spanning tree, minimum cut, densest subgraph, and maximum matching. The additive error of our improved MST algorithm is $O(W \log^{3/2}T / \varepsilon)$, where $W$ is the maximum weight of any edge, which, as we show, is tight up to a $(\sqrt{\log T} / \varepsilon)$-factor. For the other problems, we present a partially-dynamic algorithm with multiplicative error $(1+\beta)$ for any constant $\beta > 0$ and additive error $O(W \log(nW) \log(T) / (\varepsilon \beta) )$. Finally, we show that the additive error for a broad class of dynamic graph algorithms with user-level privacy must be linear in the value of the output solution's range.
Many physical processes in science and engineering are naturally represented by operators between infinite-dimensional function spaces. The problem of operator learning, in this context, seeks to extract these physical processes from empirical data, which is challenging due to the infinite or high dimensionality of data. An integral component in addressing this challenge is model reduction, which reduces both the data dimensionality and problem size. In this paper, we utilize low-dimensional nonlinear structures in model reduction by investigating Auto-Encoder-based Neural Network (AENet). AENet first learns the latent variables of the input data and then learns the transformation from these latent variables to corresponding output data. Our numerical experiments validate the ability of AENet to accurately learn the solution operator of nonlinear partial differential equations. Furthermore, we establish a mathematical and statistical estimation theory that analyzes the generalization error of AENet. Our theoretical framework shows that the sample complexity of training AENet is intricately tied to the intrinsic dimension of the modeled process, while also demonstrating the remarkable resilience of AENet to noise.
We investigate two possible techniques to authenticate the q-digest data structure, along with a worst-case study of the computational complexity both in time and space of the proposed solutions, and considerations on the feasibility of the presented approaches in real-world scenarios. We conclude the discussion by presenting some considerations on the information complexity of the queries in the two proposed approaches, and by presenting some interesting ideas that could be the subject of future studies on the topic.
Segmentation-based scene text detection algorithms can handle arbitrary shape scene texts and have strong robustness and adaptability, so it has attracted wide attention. Existing segmentation-based scene text detection algorithms usually only segment the pixels in the center region of the text, while ignoring other information of the text region, such as edge information, distance information, etc., thus limiting the detection accuracy of the algorithm for scene text. This paper proposes a plug-and-play module called the Region Multiple Information Perception Module (RMIPM) to enhance the detection performance of segmentation-based algorithms. Specifically, we design an improved module that can perceive various types of information about scene text regions, such as text foreground classification maps, distance maps, direction maps, etc. Experiments on MSRA-TD500 and TotalText datasets show that our method achieves comparable performance with current state-of-the-art algorithms.
Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.
A common pipeline in functional data analysis is to first convert the discretely observed data to smooth functions, and then represent the functions by a finite-dimensional vector of coefficients summarizing the information. Existing methods for data smoothing and dimensional reduction mainly focus on learning the linear mappings from the data space to the representation space, however, learning only the linear representations may not be sufficient. In this study, we propose to learn the nonlinear representations of functional data using neural network autoencoders designed to process data in the form it is usually collected without the need of preprocessing. We design the encoder to employ a projection layer computing the weighted inner product of the functional data and functional weights over the observed timestamp, and the decoder to apply a recovery layer that maps the finite-dimensional vector extracted from the functional data back to functional space using a set of predetermined basis functions. The developed architecture can accommodate both regularly and irregularly spaced data. Our experiments demonstrate that the proposed method outperforms functional principal component analysis in terms of prediction and classification, and maintains superior smoothing ability and better computational efficiency in comparison to the conventional autoencoders under both linear and nonlinear settings.
Traditionally, classical numerical schemes have been employed to solve partial differential equations (PDEs) using computational methods. Recently, neural network-based methods have emerged. Despite these advancements, neural network-based methods, such as physics-informed neural networks (PINNs) and neural operators, exhibit deficiencies in robustness and generalization. To address these issues, numerous studies have integrated classical numerical frameworks with machine learning techniques, incorporating neural networks into parts of traditional numerical methods. In this study, we focus on hyperbolic conservation laws by replacing traditional numerical fluxes with neural operators. To this end, we developed loss functions inspired by established numerical schemes related to conservation laws and approximated numerical fluxes using Fourier neural operators (FNOs). Our experiments demonstrated that our approach combines the strengths of both traditional numerical schemes and FNOs, outperforming standard FNO methods in several respects. For instance, we demonstrate that our method is robust, has resolution invariance, and is feasible as a data-driven method. In particular, our method can make continuous predictions over time and exhibits superior generalization capabilities with out-of-distribution (OOD) samples, which are challenges that existing neural operator methods encounter.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.