亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

If a person firmly believes in a non-factual statement, such as "The Earth is flat", and argues in its favor, there is no inherent intention to deceive. As the argumentation stems from genuine belief, it may be unlikely to exhibit the linguistic properties associated with deception or lying. This interplay of factuality, personal belief, and intent to deceive remains an understudied area. Disentangling the influence of these variables in argumentation is crucial to gain a better understanding of the linguistic properties attributed to each of them. To study the relation between deception and factuality, based on belief, we present the DeFaBel corpus, a crowd-sourced resource of belief-based deception. To create this corpus, we devise a study in which participants are instructed to write arguments supporting statements like "eating watermelon seeds can cause indigestion", regardless of its factual accuracy or their personal beliefs about the statement. In addition to the generation task, we ask them to disclose their belief about the statement. The collected instances are labelled as deceptive if the arguments are in contradiction to the participants' personal beliefs. Each instance in the corpus is thus annotated (or implicitly labelled) with personal beliefs of the author, factuality of the statement, and the intended deceptiveness. The DeFaBel corpus contains 1031 texts in German, out of which 643 are deceptive and 388 are non-deceptive. It is the first publicly available corpus for studying deception in German. In our analysis, we find that people are more confident in the persuasiveness of their arguments when the statement is aligned with their belief, but surprisingly less confident when they are generating arguments in favor of facts. The DeFaBel corpus can be obtained from //www.ims.uni-stuttgart.de/data/defabel

相關內容

Since Automated Driving Systems are not expected to operate flawlessly, Automated Vehicles will require human assistance in certain situations. For this reason, teleoperation offers the opportunity for a human to be remotely connected to the vehicle and assist it. The Remote Operator can provide extensive support by directly controlling the vehicle, eliminating the need for Automated Driving functions. However, due to the physical disconnection to the vehicle, monitoring and controlling is challenging compared to driving in the vehicle. Therefore, this work follows the approach of simplifying the task for the Remote Operator by separating the path and velocity input. In a study using a miniature vehicle, different operator-vehicle interactions and input devices were compared based on collisions, task completion time, usability and workload. The evaluation revealed significant differences between the three implemented prototypes using a steering wheel, mouse and keyboard or a touchscreen. The separate input of path and velocity via mouse and keyboard or touchscreen is preferred but is slower compared to parallel input via steering wheel.

Document Image Binarization is a well-known problem in Document Analysis and Computer Vision, although it is far from being solved. One of the main challenges of this task is that documents generally exhibit degradations and acquisition artifacts that can greatly vary throughout the page. Nonetheless, even when dealing with a local patch of the document, taking into account the overall appearance of a wide portion of the page can ease the prediction by enriching it with semantic information on the ink and background conditions. In this respect, approaches able to model both local and global information have been proven suitable for this task. In particular, recent applications of Vision Transformer (ViT)-based models, able to model short and long-range dependencies via the attention mechanism, have demonstrated their superiority over standard Convolution-based models, which instead struggle to model global dependencies. In this work, we propose an alternative solution based on the recently introduced Fast Fourier Convolutions, which overcomes the limitation of standard convolutions in modeling global information while requiring fewer parameters than ViTs. We validate the effectiveness of our approach via extensive experimental analysis considering different types of degradations.

Decentralized Federated Learning (DFL) has become popular due to its robustness and avoidance of centralized coordination. In this paradigm, clients actively engage in training by exchanging models with their networked neighbors. However, DFL introduces increased costs in terms of training and communication. Existing methods focus on minimizing communication often overlooking training efficiency and data heterogeneity. To address this gap, we propose a novel \textit{sparse-to-sparser} training scheme: DA-DPFL. DA-DPFL initializes with a subset of model parameters, which progressively reduces during training via \textit{dynamic aggregation} and leads to substantial energy savings while retaining adequate information during critical learning periods. Our experiments showcase that DA-DPFL substantially outperforms DFL baselines in test accuracy, while achieving up to $5$ times reduction in energy costs. We provide a theoretical analysis of DA-DPFL's convergence by solidifying its applicability in decentralized and personalized learning. The code is available at://github.com/EricLoong/da-dpfl

WhatsApp has become a pivotal communication tool in India, transcending cultural boundaries and deeply integrating into the nation's digital landscape. Meta's introduction of WhatsApp for Business aligns seamlessly with the platform's popularity, offering businesses a crucial tool. However, the monetization plans pose challenges, particularly for smaller businesses, in balancing revenue goals with accessibility. This study, employing discourse analysis, examines Meta's infrastructuring of WhatsApp in India, emphasizing the dynamic interplay of technological, social, and cultural dimensions. Consequently, it highlights potential power differences caused by the deployment of WhatsApp for Business followed by its gradual but significant modifications, encouraging scholars to investigate the implications and ethics of rapid technological changes, particularly for marginalized users.

Cybersecurity threats in Additive Manufacturing (AM) are an increasing concern as AM adoption continues to grow. AM is now being used for parts in the aerospace, transportation, and medical domains. Threat vectors which allow for part compromise are particularly concerning, as any failure in these domains would have life-threatening consequences. A major challenge to investigation of AM part-compromises comes from the difficulty in evaluating and benchmarking both identified threat vectors as well as methods for detecting adversarial actions. In this work, we introduce a generalized platform for systematic analysis of attacks against and defenses for 3D printers. Our "OFFRAMPS" platform is based on the open-source 3D printer control board "RAMPS." OFFRAMPS allows analysis, recording, and modification of all control signals and I/O for a 3D printer. We show the efficacy of OFFRAMPS by presenting a series of case studies based on several Trojans, including ones identified in the literature, and show that OFFRAMPS can both emulate and detect these attacks, i.e., it can both change and detect arbitrary changes to the g-code print commands.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司