亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many natural language processing tasks, e.g., coreference resolution and semantic role labeling, require selecting text spans and making decisions about them. A typical approach to such tasks is to score all possible spans and greedily select spans for task-specific downstream processing. This approach, however, does not incorporate any inductive bias about what sort of spans ought to be selected, e.g., that selected spans tend to be syntactic constituents. In this paper, we propose a novel grammar-based structured span selection model which learns to make use of the partial span-level annotation provided for such problems. Compared to previous approaches, our approach gets rid of the heuristic greedy span selection scheme, allowing us to model the downstream task on an optimal set of spans. We evaluate our model on two popular span prediction tasks: coreference resolution and semantic role labeling. We show empirical improvements on both.

相關內容

Large language models (LLMs) have demonstrated superior performance compared to previous methods on various tasks, and often serve as the foundation models for many researches and services. However, the untrustworthy third-party LLMs may covertly introduce vulnerabilities for downstream tasks. In this paper, we explore the vulnerability of LLMs through the lens of backdoor attacks. Different from existing backdoor attacks against LLMs, ours scatters multiple trigger keys in different prompt components. Such a Composite Backdoor Attack (CBA) is shown to be stealthier than implanting the same multiple trigger keys in only a single component. CBA ensures that the backdoor is activated only when all trigger keys appear. Our experiments demonstrate that CBA is effective in both natural language processing (NLP) and multimodal tasks. For instance, with $3\%$ poisoning samples against the LLaMA-7B model on the Emotion dataset, our attack achieves a $100\%$ Attack Success Rate (ASR) with a False Triggered Rate (FTR) below $2.06\%$ and negligible model accuracy degradation. The unique characteristics of our CBA can be tailored for various practical scenarios, e.g., targeting specific user groups. Our work highlights the necessity of increased security research on the trustworthiness of foundation LLMs.

Large language models (LLMs) face significant challenges stemming from the inherent limitations in knowledge, memory, alignment, and action. These challenges cannot be addressed by LLMs alone, but should rely on assistance from the external world, such as knowledge base, memory store, demonstration examples, and tools. Retrieval augmentation stands as a vital mechanism for bridging the gap between LLMs and the external assistance. However, conventional methods encounter two pressing issues. On one hand, the general-purpose retrievers are not properly optimized for the retrieval augmentation of LLMs. On the other hand, the task-specific retrievers lack the required versatility, hindering their performance across the diverse retrieval augmentation scenarios. In this work, we present a novel approach, the LLM Embedder, which comprehensively support the diverse needs of LLMs' retrieval augmentation with one unified embedding model. Training such an unified model is non-trivial, as various retrieval tasks aim to capture distinct semantic relationships, often subject to mutual interference. To address this challenge, we systematically optimize our training methodology. This includes reward formulation based on LLMs' feedback, the stabilization of knowledge distillation, multi-task fine-tuning with explicit instructions, and the use of homogeneous in-batch negative sampling. These optimization strategies contribute to the outstanding empirical performance of the LLM-Embedder. Notably, it yields remarkable enhancements in retrieval augmentation for LLMs, surpassing both general-purpose and task-specific retrievers in various evaluation scenarios. This project is made publicly available at //github.com/FlagOpen/FlagEmbedding.

Speculative decoding is a pivotal technique to accelerate the inference of large language models (LLMs) by employing a smaller draft model to predict the target model's outputs. However, its efficacy can be limited due to the low predictive accuracy of the draft model, particularly when faced with diverse text inputs and a significant capability gap between the draft and target models. We introduce online speculative decoding (OSD) to address this challenge. The main idea is to continually update (multiple) draft model(s) on observed user query data using the abundant excess computational power in an LLM serving cluster. Given that LLM inference is memory-bounded, the surplus computational power in a typical LLM serving cluster can be repurposed for online retraining of draft models, thereby making the training cost-neutral. Since the query distribution of an LLM service is relatively simple, retraining on query distribution enables the draft model to more accurately predict the target model's outputs, particularly on data originating from query distributions. As the draft model evolves online, it aligns with the query distribution in real time, mitigating distribution shifts. We develop a prototype of online speculative decoding based on online knowledge distillation and evaluate it using both synthetic and real query data on several popular LLMs. The results show a substantial increase in the token acceptance rate by 0.1 to 0.65, which translates into 1.22x to 3.06x latency reduction.

While large language models (LLMs) have shown impressive results for more objective tasks such as QA and retrieval, it remains nontrivial to evaluate their performance on open-ended text generation for reasons including (1) data contamination; (2) multi-dimensional evaluation criteria; and (3) subjectiveness stemming from reviewers' personal preferences. To address such issues, we propose to model personalization in an uncontaminated open-ended generation assessment. We create two new datasets Per-MPST and Per-DOC for personalized story evaluation, by re-purposing existing datasets with proper anonymization and new personalized labels. We further develop a personalized story evaluation model PERSE to infer reviewer preferences and provide a personalized evaluation. Specifically, given a few exemplary reviews from a particular reviewer, PERSE predicts either a detailed review or fine-grained comparison in several aspects (such as interestingness and surprise) for that reviewer on a new text input. Experimental results show that PERSE outperforms GPT-4 by 15.8% on Kendall correlation of story ratings, and by 13.7% on pairwise preference prediction accuracy. Both datasets and code will be released.

Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as $d$-logics. Unlike logics based on the topological closure operator, $d$-logics have not previously been studied in the framework of dynamical systems, which are pairs $(X,f)$ consisting of a topological space $X$ equipped with a continuous function $f\colon X\to X$. We introduce the logics $\bf{wK4C}$, $\bf{K4C}$ and $\bf{GLC}$ and show that they all have the finite Kripke model property and are sound and complete with respect to the $d$-semantics in this dynamical setting. In particular, we prove that $\bf{wK4C}$ is the $d$-logic of all dynamic topological systems, $\bf{K4C}$ is the $d$-logic of all $T_D$ dynamic topological systems, and $\bf{GLC}$ is the $d$-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where $f$ is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems $\bf{wK4H}$, $\bf{K4H}$ and $\bf{GLH}$. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological $d$-logics. Furthermore, our result for $\bf{GLC}$ constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation -- something known to be impossible over the class of all spaces.

We propose a novel random walk-based algorithm for unbiased estimation of arbitrary functions of a weighted adjacency matrix, coined universal graph random features (u-GRFs). This includes many of the most popular examples of kernels defined on the nodes of a graph. Our algorithm enjoys subquadratic time complexity with respect to the number of nodes, overcoming the notoriously prohibitive cubic scaling of exact graph kernel evaluation. It can also be trivially distributed across machines, permitting learning on much larger networks. At the heart of the algorithm is a modulation function which upweights or downweights the contribution from different random walks depending on their lengths. We show that by parameterising it with a neural network we can obtain u-GRFs that give higher-quality kernel estimates or perform efficient, scalable kernel learning. We provide robust theoretical analysis and support our findings with experiments including pointwise estimation of fixed graph kernels, solving non-homogeneous graph ordinary differential equations, node clustering and kernel regression on triangular meshes.

Deep neural networks (DNNs) have succeeded in many different perception tasks, e.g., computer vision, natural language processing, reinforcement learning, etc. The high-performed DNNs heavily rely on intensive resource consumption. For example, training a DNN requires high dynamic memory, a large-scale dataset, and a large number of computations (a long training time); even inference with a DNN also demands a large amount of static storage, computations (a long inference time), and energy. Therefore, state-of-the-art DNNs are often deployed on a cloud server with a large number of super-computers, a high-bandwidth communication bus, a shared storage infrastructure, and a high power supplement. Recently, some new emerging intelligent applications, e.g., AR/VR, mobile assistants, Internet of Things, require us to deploy DNNs on resource-constrained edge devices. Compare to a cloud server, edge devices often have a rather small amount of resources. To deploy DNNs on edge devices, we need to reduce the size of DNNs, i.e., we target a better trade-off between resource consumption and model accuracy. In this dissertation, we studied four edge intelligence scenarios, i.e., Inference on Edge Devices, Adaptation on Edge Devices, Learning on Edge Devices, and Edge-Server Systems, and developed different methodologies to enable deep learning in each scenario. Since current DNNs are often over-parameterized, our goal is to find and reduce the redundancy of the DNNs in each scenario.

Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.

Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

北京阿比特科技有限公司