亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Coded computation techniques provide robustness against straggling workers in distributed computing. However, most of the existing schemes require exact provisioning of the straggling behaviour and ignore the computations carried out by straggling workers. Moreover, these schemes are typically designed to recover the desired computation results accurately, while in many machine learning and iterative optimization algorithms, faster approximate solutions are known to result in an improvement in the overall convergence time. In this paper, we first introduce a novel coded matrix-vector multiplication scheme, called coded computation with partial recovery (CCPR), which benefits from the advantages of both coded and uncoded computation schemes, and reduces both the computation time and the decoding complexity by allowing a trade-off between the accuracy and the speed of computation. We then extend this approach to distributed implementation of more general computation tasks by proposing a coded communication scheme with partial recovery, where the results of subtasks computed by the workers are coded before being communicated. Numerical simulations on a large linear regression task confirm the benefits of the proposed distributed computation scheme with partial recovery in terms of the trade-off between the computation accuracy and latency.

相關內容

DC:Distributed Computing。 Explanation:分布式計算。 Publisher:Springer。 SIT:

We consider the problem of sparse normal means estimation in a distributed setting with communication constraints. We assume there are $M$ machines, each holding $d$-dimensional observations of a $K$-sparse vector $\mu$ corrupted by additive Gaussian noise. The $M$ machines are connected in a star topology to a fusion center, whose goal is to estimate the vector $\mu$ with a low communication budget. Previous works have shown that to achieve the centralized minimax rate for the $\ell_2$ risk, the total communication must be high - at least linear in the dimension $d$. This phenomenon occurs, however, at very weak signals. We show that at signal-to-noise ratios (SNRs) that are sufficiently high - but not enough for recovery by any individual machine - the support of $\mu$ can be correctly recovered with significantly less communication. Specifically, we present two algorithms for distributed estimation of a sparse mean vector corrupted by either Gaussian or sub-Gaussian noise. We then prove that above certain SNR thresholds, with high probability, these algorithms recover the correct support with total communication that is sublinear in the dimension $d$. Furthermore, the communication decreases exponentially as a function of signal strength. If in addition $KM\ll \tfrac{d}{\log d}$, then with an additional round of sublinear communication, our algorithms achieve the centralized rate for the $\ell_2$ risk. Finally, we present simulations that illustrate the performance of our algorithms in different parameter regimes.

We propose a generic mechanism for incentivizing behavior in an arbitrary finite game using payments. Doing so is trivial if the mechanism is allowed to observe all actions taken in the game, as this allows it to simply punish those agents who deviate from the intended strategy. Instead, we consider an abstraction where the mechanism probabilistically infers information about what happened in the game. We show that payment schemes can be used to implement any set of utilities if and only if the mechanism can essentially infer completely what happened. We show that finding an optimal payment scheme for games of perfect information is \textsf{P}-complete, and conjecture it to be \textsf{PPAD}-hard for games of imperfect information. We prove a lower bound on the size of the payments, showing that the payments must be linear in the intended level of security. We demonstrate the applicability of our model to concrete problems in distributed computing, namely decentralized commerce and secure multiparty computation, for which the payments match the lower bound asymptotically.

In this paper, we propose GT-GDA, a distributed optimization method to solve saddle point problems of the form: $\min_{\mathbf{x}} \max_{\mathbf{y}} \{F(\mathbf{x},\mathbf{y}) :=G(\mathbf{x}) + \langle \mathbf{y}, \overline{P} \mathbf{x} \rangle - H(\mathbf{y})\}$, where the functions $G(\cdot)$, $H(\cdot)$, and the the coupling matrix $\overline{P}$ are distributed over a strongly connected network of nodes. GT-GDA is a first-order method that uses gradient tracking to eliminate the dissimilarity caused by heterogeneous data distribution among the nodes. In the most general form, GT-GDA includes a consensus over the local coupling matrices to achieve the optimal (unique) saddle point, however, at the expense of increased communication. To avoid this, we propose a more efficient variant GT-GDA-Lite that does not incur the additional communication and analyze its convergence in various scenarios. We show that GT-GDA converges linearly to the unique saddle point solution when $G(\cdot)$ is smooth and convex, $H(\cdot)$ is smooth and strongly convex, and the global coupling matrix $\overline{P}$ has full column rank. We further characterize the regime under which GT-GDA exhibits a network topology-independent convergence behavior. We next show the linear convergence of GT-GDA to an error around the unique saddle point, which goes to zero when the coupling cost ${\langle \mathbf y, \overline{P} \mathbf x \rangle}$ is common to all nodes, or when $G(\cdot)$ and $H(\cdot)$ are quadratic. Numerical experiments illustrate the convergence properties and importance of GT-GDA and GT-GDA-Lite for several applications.

In this work isogeometric mortaring is used for the simulation of a six pole permanent magnet synchronous machine. Isogeometric mortaring is especially well suited for the efficient computation of rotating electric machines as it allows for an exact geometry representation for arbitrary rotation angles without the need of remeshing. The appropriate B-spline spaces needed for the solution of Maxwell's equations and the corresponding mortar spaces are introduced. Unlike in classical finite element methods their construction is straightforward in the isogeometric case. The torque in the machine is computed using two different methods, i.e., Arkkio's method and by using the Lagrange multipliers from the mortaring.

In this paper, we examine the structure of systems which are weighted homogeneous for several systems of weights, and how it impacts Gr\"obner basis computations. We present different ways to compute Gr\"obner bases for systems with this structure, either directly or by reducing to existing structures. We also present optimization techniques which are suitable for this structure. The most natural orderings to compute a Gr\"obner basis for systems with this structure are weighted orderings following the systems of weights, and we discuss the possibility to use the algorithms in order to directly compute a basis for such an order, regardless of the structure of the system. We discuss applicable notions of regularity which could be used to evaluate the complexity of the algorithm, and prove that they are generic if non-empty. Finally, we present experimental data from a prototype implementation of the algorithms in SageMath.

The Benjamini-Hochberg (BH) procedure is a celebrated method for multiple testing with false discovery rate (FDR) control. In this paper, we consider large-scale distributed networks where each node possesses a large number of p-values and the goal is to achieve the global BH performance in a communication-efficient manner. We propose that every node performs a local test with an adjusted test size according to the (estimated) global proportion of true null hypotheses. With suitable assumptions, our method is asymptotically equivalent to the global BH procedure. Motivated by this, we develop an algorithm for star networks where each node only needs to transmit an estimate of the (local) proportion of nulls and the (local) number of p-values to the center node; the center node then broadcasts a parameter (computed based on the global estimate and test size) to the local nodes. In the experiment section, we utilize existing estimators of the proportion of true nulls and consider various settings to evaluate the performance and robustness of our method.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司