亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Text-conditioned generation models are commonly evaluated based on the quality of the generated data and its alignment with the input text prompt. On the other hand, several applications of prompt-based generative models require sufficient diversity in the generated data to ensure the models' capability of generating image and video samples possessing a variety of features. However, most existing diversity metrics are designed for unconditional generative models, and thus cannot distinguish the diversity arising from variations in text prompts and that contributed by the generative model itself. In this work, our goal is to quantify the prompt-induced and model-induced diversity in samples generated by prompt-based models. We propose an information-theoretic approach for internal diversity quantification, where we decompose the kernel-based entropy $H(X)$ of the generated data $X$ into the sum of the conditional entropy $H(X|T)$, given text variable $T$, and the mutual information $I(X; T)$ between the text and data variables. We introduce the \emph{Conditional-Vendi} score based on $H(X|T)$ to quantify the internal diversity of the model and the \emph{Information-Vendi} score based on $I(X; T)$ to measure the statistical relevance between the generated data and text prompts. We provide theoretical results to statistically interpret these scores and relate them to the unconditional Vendi score. We conduct several numerical experiments to show the correlation between the Conditional-Vendi score and the internal diversity of text-conditioned generative models. The codebase is available at \href{//github.com/mjalali/conditional-vendi}{//github.com/mjalali/conditional-vendi}.

相關內容

Ordering has been extensively studied in many visualization applications, such as axis and matrix reordering, for the simple reason that the order will greatly impact the perceived pattern of data. Many quality metrics concerning data pattern, perception, and aesthetics are proposed, and respective optimization algorithms are developed. However, the optimization problems related to ordering are often difficult to solve (e.g., TSP is NP-complete), and developing specialized optimization algorithms is costly. In this paper, we propose Versatile Ordering Network (VON), which automatically learns the strategy to order given a quality metric. VON uses the quality metric to evaluate its solutions, and leverages reinforcement learning with a greedy rollout baseline to improve itself. This keeps the metric transparent and allows VON to optimize over different metrics. Additionally, VON uses the attention mechanism to collect information across scales and reposition the data points with respect to the current context. This allows VONs to deal with data points following different distributions. We examine the effectiveness of VON under different usage scenarios and metrics. The results demonstrate that VON can produce comparable results to specialized solvers. The code is available at //github.com/sysuvis/VON.

While crowdsourcing is an established solution for facilitating and scaling the collection of speech data, the involvement of non-experts necessitates protocols to ensure final data quality. To reduce the costs of these essential controls, this paper investigates the use of Speech Foundation Models (SFMs) to automate the validation process, examining for the first time the cost/quality trade-off in data acquisition. Experiments conducted on French, German, and Korean data demonstrate that SFM-based validation has the potential to reduce reliance on human validation, resulting in an estimated cost saving of over 40.0% without degrading final data quality. These findings open new opportunities for more efficient, cost-effective, and scalable speech data acquisition.

Population protocols are a model of distributed computation in which an arbitrary number of indistinguishable finite-state agents interact in pairs to decide some property of their initial configuration. We investigate the behaviour of population protocols under adversarial faults that cause agents to silently crash and no longer interact with other agents. As a starting point, we consider the property ``the number of agents exceeds a given threshold $t$'', represented by the predicate $x \geq t$, and show that the standard protocol for $x \geq t$ is very fragile: one single crash in a computation with $x:=2t-1$ agents can already cause the protocol to answer incorrectly that $x \geq t$ does not hold. However, a slightly less known protocol is robust: for any number $t' \geq t$ of agents, at least $t' - t+1$ crashes must occur for the protocol to answer that the property does not hold. We formally define robustness for arbitrary population protocols, and investigate the question whether every predicate computable by population protocols has a robust protocol. Angluin et al. proved in 2007 that population protocols decide exactly the Presburger predicates, which can be represented as Boolean combinations of threshold predicates of the form $\sum_{i=1}^n a_i \cdot x_i \geq t$ for $a_1,...,a_n, t \in \mathbb{Z}$ and modulo prdicates of the form $\sum_{i=1}^n a_i \cdot x_i \bmod m \geq t $ for $a_1, \ldots, a_n, m, t \in \mathbb{N}$. We design robust protocols for all threshold and modulo predicates. We also show that, unfortunately, the techniques in the literature that construct a protocol for a Boolean combination of predicates given protocols for the conjuncts do not preserve robustness. So the question remains open.

With the increasing availability of multimodal data, many fields urgently require advanced architectures capable of effectively integrating these diverse data sources to address specific problems. This study proposes a hybrid recommendation model that combines the Mixture of Experts (MOE) framework with large language models to enhance the performance of recommendation systems in the healthcare domain. We built a small dataset for recommending healthy food based on patient descriptions and evaluated the model's performance on several key metrics, including Precision, Recall, NDCG, and MAP@5. The experimental results show that the hybrid model outperforms the baseline models, which use MOE or large language models individually, in terms of both accuracy and personalized recommendation effectiveness. The paper finds image data provided relatively limited improvement in the performance of the personalized recommendation system, particularly in addressing the cold start problem. Then, the issue of reclassification of images also affected the recommendation results, especially when dealing with low-quality images or changes in the appearance of items, leading to suboptimal performance. The findings provide valuable insights into the development of powerful, scalable, and high-performance recommendation systems, advancing the application of personalized recommendation technologies in real-world domains such as healthcare.

Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at //ieee-dataport.org/13824, as well as the GDSG algorithm codes at //github.com/qiyu3816/GDSG.

Confidence calibration of classification models is a technique to estimate the true posterior probability of the predicted class, which is critical for ensuring reliable decision-making in practical applications. Existing confidence calibration methods mostly use statistical techniques to estimate the calibration curve from data or fit a user-defined calibration function, but often overlook fully mining and utilizing the prior distribution behind the calibration curve. However, a well-informed prior distribution can provide valuable insights beyond the empirical data under the limited data or low-density regions of confidence scores. To fill this gap, this paper proposes a new method that integrates the prior distribution behind the calibration curve with empirical data to estimate a continuous calibration curve, which is realized by modeling the sampling process of calibration data as a binomial process and maximizing the likelihood function of the binomial process. We prove that the calibration curve estimating method is Lipschitz continuous with respect to data distribution and requires a sample size of $3/B$ of that required for histogram binning, where $B$ represents the number of bins. Also, a new calibration metric ($TCE_{bpm}$), which leverages the estimated calibration curve to estimate the true calibration error (TCE), is designed. $TCE_{bpm}$ is proven to be a consistent calibration measure. Furthermore, realistic calibration datasets can be generated by the binomial process modeling from a preset true calibration curve and confidence score distribution, which can serve as a benchmark to measure and compare the discrepancy between existing calibration metrics and the true calibration error. The effectiveness of our calibration method and metric are verified in real-world and simulated data.

Hypergraphs are powerful mathematical structures that can model complex, high-order relationships in various domains, including social networks, bioinformatics, and recommender systems. However, generating realistic and diverse hypergraphs remains challenging due to their inherent complexity and lack of effective generative models. In this paper, we introduce a diffusion-based Hypergraph Generation (HYGENE) method that addresses these challenges through a progressive local expansion approach. HYGENE works on the bipartite representation of hypergraphs, starting with a single pair of connected nodes and iteratively expanding it to form the target hypergraph. At each step, nodes and hyperedges are added in a localized manner using a denoising diffusion process, which allows for the construction of the global structure before refining local details. Our experiments demonstrated the effectiveness of HYGENE, proving its ability to closely mimic a variety of properties in hypergraphs. To the best of our knowledge, this is the first attempt to employ deep learning models for hypergraph generation, and our work aims to lay the groundwork for future research in this area.

Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

北京阿比特科技有限公司