亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a methodological approach with a transfer learning scheme for plastic waste bottle detection and instance segmentation using the \textit{mask region proposal convolutional neural network} (Mask R-CNN). Plastic bottles constitute one of the major pollutants posing a serious threat to the environment both in oceans and on land. The automated identification and segregation of bottles can facilitate plastic waste recycling. We prepare a custom-made dataset of 192 bottle images with pixel-by pixel-polygon annotation for the automatic segmentation task. The proposed transfer learning scheme makes use of a Mask R-CNN model pre-trained on the Microsoft COCO dataset. We present a comprehensive scheme for fine-tuning the base pre-trained Mask-RCNN model on our custom dataset. Our final fine-tuned model has achieved 59.4 \textit{mean average precision} (mAP), which corresponds to the MS COCO metric. The results indicate a promising application of deep learning for detecting waste bottles.

相關內容

Video Question Answering (VideoQA) is the task of answering questions about a video. At its core is understanding the alignments between visual scenes in video and linguistic semantics in question to yield the answer. In leading VideoQA models, the typical learning objective, empirical risk minimization (ERM), latches on superficial correlations between video-question pairs and answers as the alignments. However, ERM can be problematic, because it tends to over-exploit the spurious correlations between question-irrelevant scenes and answers, instead of inspecting the causal effect of question-critical scenes. As a result, the VideoQA models suffer from unreliable reasoning. In this work, we first take a causal look at VideoQA and argue that invariant grounding is the key to ruling out the spurious correlations. Towards this end, we propose a new learning framework, Invariant Grounding for VideoQA (IGV), to ground the question-critical scene, whose causal relations with answers are invariant across different interventions on the complement. With IGV, the VideoQA models are forced to shield the answering process from the negative influence of spurious correlations, which significantly improves the reasoning ability. Experiments on three benchmark datasets validate the superiority of IGV in terms of accuracy, visual explainability, and generalization ability over the leading baselines.

With the progress of Mars exploration, numerous Mars image data are collected and need to be analyzed. However, due to the imbalance and distortion of Martian data, the performance of existing computer vision models is unsatisfactory. In this paper, we introduce a semi-supervised framework for machine vision on Mars and try to resolve two specific tasks: classification and segmentation. Contrastive learning is a powerful representation learning technique. However, there is too much information overlap between Martian data samples, leading to a contradiction between contrastive learning and Martian data. Our key idea is to reconcile this contradiction with the help of annotations and further take advantage of unlabeled data to improve performance. For classification, we propose to ignore inner-class pairs on labeled data as well as neglect negative pairs on unlabeled data, forming supervised inter-class contrastive learning and unsupervised similarity learning. For segmentation, we extend supervised inter-class contrastive learning into an element-wise mode and use online pseudo labels for supervision on unlabeled areas. Experimental results show that our learning strategies can improve the classification and segmentation models by a large margin and outperform state-of-the-art approaches.

We seek to provide an interpretable framework for segmenting users in a population for personalized decision-making. We propose a general methodology, Market Segmentation Trees (MSTs), for learning market segmentations explicitly driven by identifying differences in user response patterns. To demonstrate the versatility of our methodology, we design two new, specialized MST algorithms: (i) Choice Model Trees (CMTs), which can be used to predict a user's choice amongst multiple options and (ii) Isotonic Regression Trees (IRTs), which can be used to solve the bid landscape forecasting problem. We provide a theoretical analysis of the asymptotic running times of our algorithmic methods, which validates their computational tractability on large datasets. We also provide a customizable, open-source code base for training MSTs in Python which employs several strategies for scalability, including parallel processing and warm starts. Finally, we assess the practical performance of MSTs on several synthetic and real world datasets, showing that our method reliably finds market segmentations which accurately model response behavior. Moreover, MSTs are interpretable since the market segments can easily be described by a decision tree and often require only a fraction of the number of market segments generated by traditional approaches.

Deep learning (DL) based semantic segmentation methods have achieved excellent performance in biomedical image segmentation, producing high quality probability maps to allow extraction of rich instance information to facilitate good instance segmentation. While numerous efforts were put into developing new DL semantic segmentation models, less attention was paid to a key issue of how to effectively explore their probability maps to attain the best possible instance segmentation. We observe that probability maps by DL semantic segmentation models can be used to generate many possible instance candidates, and accurate instance segmentation can be achieved by selecting from them a set of "optimized" candidates as output instances. Further, the generated instance candidates form a well-behaved hierarchical structure (a forest), which allows selecting instances in an optimized manner. Hence, we propose a novel framework, called hierarchical earth mover's distance (H-EMD), for instance segmentation in biomedical 2D+time videos and 3D images, which judiciously incorporates consistent instance selection with semantic-segmentation-generated probability maps. H-EMD contains two main stages. (1) Instance candidate generation: capturing instance-structured information in probability maps by generating many instance candidates in a forest structure. (2) Instance candidate selection: selecting instances from the candidate set for final instance segmentation. We formulate a key instance selection problem on the instance candidate forest as an optimization problem based on the earth mover's distance (EMD), and solve it by integer linear programming. Extensive experiments on eight biomedical video or 3D datasets demonstrate that H-EMD consistently boosts DL semantic segmentation models and is highly competitive with state-of-the-art methods.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Partially-supervised instance segmentation is a task which requests segmenting objects from novel unseen categories via learning on limited seen categories with annotated masks thus eliminating demands of heavy annotation burden. The key to addressing this task is to build an effective class-agnostic mask segmentation model. Unlike previous methods that learn such models only on seen categories, in this paper, we propose a new method, named ContrastMask, which learns a mask segmentation model on both seen and unseen categories under a unified pixel-level contrastive learning framework. In this framework, annotated masks of seen categories and pseudo masks of unseen categories serve as a prior for contrastive learning, where features from the mask regions (foreground) are pulled together, and are contrasted against those from the background, and vice versa. Through this framework, feature discrimination between foreground and background is largely improved, facilitating learning of the class-agnostic mask segmentation model. Exhaustive experiments on the COCO dataset demonstrate the superiority of our method, which outperforms previous state-of-the-arts.

Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at //github.com/ZwwWayne/K-Net/.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司