亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A family of stabilizer-free $P_k$ virtual elements are constructed on triangular meshes. When choosing an accurate and proper interpolation, the stabilizer of the virtual elements can be dropped while the quasi-optimality is kept. The interpolating space here is the space of continuous $P_k$ polynomials on the Hsieh-Clough-Tocher macro-triangle, where the macro-triangle is defined by connecting three vertices of a triangle with its barycenter. We show that such an interpolation preserves $P_k$ polynomials locally and enforces the coerciveness of the resulting bilinear form. Consequently the stabilizer-free virtual element solutions converge at the optimal order. Numerical tests are provided to confirm the theory and to be compared with existing virtual elements.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Austrin showed that the approximation ratio $\beta\approx 0.94016567$ obtained by the MAX 2-SAT approximation algorithm of Lewin, Livnat and Zwick (LLZ) is optimal modulo the Unique Games Conjecture (UGC) and modulo a Simplicity Conjecture that states that the worst performance of the algorithm is obtained on so called simple configurations. We prove Austrin's conjecture, thereby showing the optimality of the LLZ approximation algorithm, relying only on the Unique Games Conjecture. Our proof uses a combination of analytic and computational tools. We also present new approximation algorithms for two restrictions of the MAX 2-SAT problem. For MAX HORN-$\{1,2\}$-SAT, i.e., MAX CSP$(\{x\lor y,\bar{x}\lor y,x,\bar{x}\})$, in which clauses are not allowed to contain two negated literals, we obtain an approximation ratio of $0.94615981$. For MAX CSP$(\{x\lor y,x,\bar{x}\})$, i.e., when 2-clauses are not allowed to contain negated literals, we obtain an approximation ratio of $0.95397990$. By adapting Austrin's and our arguments for the MAX 2-SAT problem we show that these two approximation ratios are also tight, modulo only the UGC conjecture. This completes a full characterization of the approximability of the MAX 2-SAT problem and its restrictions.

A Petrov-Galerkin finite element method is constructed for a singularly perturbed elliptic problem in two space dimensions. The solution contains a regular boundary layer and two characteristic boundary layers. Exponential splines are used as test functions in one coordinate direction and are combined with bilinear trial functions defined on a Shishkin mesh. The resulting numerical method is shown to be a stable parameter-uniform numerical method that achieves a higher order of convergence compared to upwinding on the same mesh.

Quadratic NURBS-based discretizations of the Galerkin method suffer from membrane locking when applied to Kirchhoff-Love shell formulations. Membrane locking causes not only smaller displacements than expected, but also large-amplitude spurious oscillations of the membrane forces. Continuous-assumed-strain (CAS) elements have been recently introduced to remove membrane locking in quadratic NURBS-based discretizations of linear plane curved Kirchhoff rods (Casquero et al., CMAME, 2022). In this work, we generalize CAS elements to vanquish membrane locking in quadratic NURBS-based discretizations of linear Kirchhoff-Love shells. CAS elements bilinearly interpolate the membrane strains at the four corners of each element. Thus, the assumed strains have C0 continuity across element boundaries. To the best of the authors' knowledge, CAS elements are the first assumed-strain treatment to effectively overcome membrane locking in quadratic NURBS-based discretizations of Kirchhoff-Love shells while satisfying the following important characteristics for computational efficiency: (1) No additional degrees of freedom are added, (2) No additional systems of algebraic equations need to be solved, (3) No matrix multiplications or matrix inversions are needed to obtain the stiffness matrix, and (4) The nonzero pattern of the stiffness matrix is preserved. The benchmark problems show that CAS elements, using either 2x2 or 3x3 Gauss-Legendre quadrature points per element, are an effective locking treatment since this element type results in more accurate displacements for coarse meshes and excises the spurious oscillations of the membrane forces. The benchmark problems also show that CAS elements outperform state-of-the-art element types based on Lagrange polynomials equipped with either assumed-strain or reduced-integration locking treatments.

A new numerical domain decomposition method is proposed for solving elliptic equations on compact Riemannian manifolds. The advantage of this method is to avoid global triangulations or grids on manifolds. Our method is numerically tested on some $4$-dimensional manifolds such as the unit sphere $S^{4}$, the complex projective space $\mathbb{CP}^{2}$ and the product manifold $S^{2} \times S^{2}$.

A convincing feature of least-squares finite element methods is the built-in a posteriori error estimator for any conforming discretization. In order to generalize this property to discontinuous finite element ansatz functions, this paper introduces a least-squares principle on piecewise Sobolev functions for the solution of the Poisson model problem in 2D with mixed boundary conditions. It allows for fairly general discretizations including standard piecewise polynomial ansatz spaces on triangular and polygonal meshes. The presented scheme enforces the interelement continuity of the piecewise polynomials by additional least-squares residuals. A side condition on the normal jumps of the flux variable requires a vanishing integral mean and enables a natural weighting of the jump in the least-squares functional in terms of the mesh size. This avoids over-penalization with additional regularity assumptions on the exact solution as usually present in the literature on discontinuous LSFEM. The proof of the built-in a posteriori error estimation for the over-penalized scheme is presented as well. All results in this paper are robust with respect to the size of the domain guaranteed by a suitable weighting of the residuals in the least-squares functional. Numerical experiments exhibit optimal convergence rates of the adaptive mesh-refining algorithm for various polynomial degrees.

We construct a graph with $n$ vertices where the smoothed runtime of the 3-FLIP algorithm for the 3-Opt Local Max-Cut problem can be as large as $2^{\Omega(\sqrt{n})}$. This provides the first example where a local search algorithm for the Max-Cut problem can fail to be efficient in the framework of smoothed analysis. We also give a new construction of graphs where the runtime of the FLIP algorithm for the Local Max-Cut problem is $2^{\Omega(n)}$ for any pivot rule. This graph is much smaller and has a simpler structure than previous constructions.

We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

We introduce a novel structure-preserving method in order to approximate the compressible ideal Magnetohydrodynamics (MHD) equations. This technique addresses the MHD equations using a non-divergence formulation, where the contributions of the magnetic field to the momentum and total mechanical energy are treated as source terms. Our approach uses the Marchuk-Strang splitting technique and involves three distinct components: a compressible Euler solver, a source-system solver, and an update procedure for the total mechanical energy. The scheme allows for significant freedom on the choice of Euler's equation solver, while the magnetic field is discretized using a curl-conforming finite element space, yielding exact preservation of the involution constraints. We prove that the method preserves invariant domain properties, including positivity of density, positivity of internal energy, and the minimum principle of the specific entropy. If the scheme used to solve Euler's equation conserves total energy, then the resulting MHD scheme can be proven to preserve total energy. Similarly, if the scheme used to solve Euler's equation is entropy-stable, then the resulting MHD scheme is entropy stable as well. In our approach, the CFL condition does not depend on magnetosonic wave-speeds, but only on the usual maximum wave speed from Euler's system. To validate the effectiveness of our method, we solve a variety of ideal MHD problems, showing that the method is capable of delivering high-order accuracy in space for smooth problems, while also offering unconditional robustness in the shock hydrodynamics regime as well.

Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.

北京阿比特科技有限公司