亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating the lengths-of-stay (LoS) of hospitalised COVID-19 patients is key for predicting the hospital beds' demand and planning mitigation strategies, as overwhelming the healthcare systems has critical consequences for disease mortality. However, accurately mapping the time-to-event of hospital outcomes, such as the LoS in the intensive care unit (ICU), requires understanding patient trajectories while adjusting for covariates and observation bias, such as incomplete data. Standard methods, such as the Kaplan-Meier estimator, require prior assumptions that are untenable given current knowledge. Using real-time surveillance data from the first weeks of the COVID-19 epidemic in Galicia (Spain), we aimed to model the time-to-event and event probabilities of patients' hospitalised, without parametric priors and adjusting for individual covariates. We applied a non-parametric mixture cure model and compared its performance in estimating hospital ward (HW)/ICU LoS to the performances of commonly used methods to estimate survival. We showed that the proposed model outperformed standard approaches, providing more accurate ICU and HW LoS estimates. Finally, we applied our model estimates to simulate COVID-19 hospital demand using a Monte Carlo algorithm. We provided evidence that adjusting for sex, generally overlooked in prediction models, together with age is key for accurately forecasting HW and ICU occupancy, as well as discharge or death outcomes.

相關內容

We investigate personalizing the explanations that an Intelligent Tutoring System generates to justify the hints it provides to students to foster their learning. The personalization targets students with low levels of two traits, Need for Cognition and Conscientiousness, and aims to enhance these students' engagement with the explanations, based on prior findings that these students do not naturally engage with the explanations but they would benefit from them if they do. To evaluate the effectiveness of the personalization, we conducted a user study where we found that our proposed personalization significantly increases our target users' interaction with the hint explanations, their understanding of the hints and their learning. Hence, this work provides valuable insights into effectively personalizing AI-driven explanations for cognitively demanding tasks such as learning.

We investigate personalizing the explanations that an Intelligent Tutoring System generates to justify the hints it provides to students to foster their learning. The personalization targets students with low levels of two traits, Need for Cognition and Conscientiousness, and aims to enhance these students' engagement with the explanations, based on prior findings that these students do not naturally engage with the explanations but they would benefit from them if they do. To evaluate the effectiveness of the personalization, we conducted a user study where we found that our proposed personalization significantly increases our target users' interaction with the hint explanations, their understanding of the hints and their learning. Hence, this work provides valuable insights into effectively personalizing AI-driven explanations for cognitively demanding tasks such as learning.

We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon (FRS) codes can be made to run in nearly-linear time. This yields, to our knowledge, the first known family of codes that can be decoded in nearly linear time, even as they approach the list decoding capacity. Univariate multiplicity codes and FRS codes are natural variants of Reed-Solomon codes that were discovered and studied for their applications to list-decoding. It is known that for every $\epsilon >0$, and rate $R \in (0,1)$, there exist explicit families of these codes that have rate $R$ and can be list-decoded from a $(1-R-\epsilon)$ fraction of errors with constant list size in polynomial time (Guruswami & Wang (IEEE Trans. Inform. Theory, 2013) and Kopparty, Ron-Zewi, Saraf & Wootters (SIAM J. Comput. 2023)). In this work, we present randomized algorithms that perform the above tasks in nearly linear time. Our algorithms have two main components. The first builds upon the lattice-based approach of Alekhnovich (IEEE Trans. Inf. Theory 2005), who designed a nearly linear time list-decoding algorithm for Reed-Solomon codes approaching the Johnson radius. As part of the second component, we design nearly-linear time algorithms for two natural algebraic problems. The first algorithm solves linear differential equations of the form $Q\left(x, f(x), \frac{df}{dx}, \dots,\frac{d^m f}{dx^m}\right) \equiv 0$ where $Q$ has the form $Q(x,y_0,\dots,y_m) = \tilde{Q}(x) + \sum_{i = 0}^m Q_i(x)\cdot y_i$. The second solves functional equations of the form $Q\left(x, f(x), f(\gamma x), \dots,f(\gamma^m x)\right) \equiv 0$ where $\gamma$ is a high-order field element. These algorithms can be viewed as generalizations of classical algorithms of Sieveking (Computing 1972) and Kung (Numer. Math. 1974) for computing the modular inverse of a power series, and might be of independent interest.

Accurate medical image segmentation demands the integration of multi-scale information, spanning from local features to global dependencies. However, it is challenging for existing methods to model long-range global information, where convolutional neural networks (CNNs) are constrained by their local receptive fields, and vision transformers (ViTs) suffer from high quadratic complexity of their attention mechanism. Recently, Mamba-based models have gained great attention for their impressive ability in long sequence modeling. Several studies have demonstrated that these models can outperform popular vision models in various tasks, offering higher accuracy, lower memory consumption, and less computational burden. However, existing Mamba-based models are mostly trained from scratch and do not explore the power of pretraining, which has been proven to be quite effective for data-efficient medical image analysis. This paper introduces a novel Mamba-based model, Swin-UMamba, designed specifically for medical image segmentation tasks, leveraging the advantages of ImageNet-based pretraining. Our experimental results reveal the vital role of ImageNet-based training in enhancing the performance of Mamba-based models. Swin-UMamba demonstrates superior performance with a large margin compared to CNNs, ViTs, and latest Mamba-based models. Notably, on AbdomenMRI, Encoscopy, and Microscopy datasets, Swin-UMamba outperforms its closest counterpart U-Mamba_Enc by an average score of 2.72%.

We discuss the inhomogeneous spiked Wigner model, a theoretical framework recently introduced to study structured noise in various learning scenarios, through the prism of random matrix theory, with a specific focus on its spectral properties. Our primary objective is to find an optimal spectral method and to extend the celebrated \cite{BBP} (BBP) phase transition criterion -- well-known in the homogeneous case -- to our inhomogeneous, block-structured, Wigner model. We provide a thorough rigorous analysis of a transformed matrix and show that the transition for the appearance of 1) an outlier outside the bulk of the limiting spectral distribution and 2) a positive overlap between the associated eigenvector and the signal, occurs precisely at the optimal threshold, making the proposed spectral method optimal within the class of iterative methods for the inhomogeneous Wigner problem.

Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight, which uses photon time-of-flight information encoded in light after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is highly possibility to be degraded due to noises and distortions. In this paper, we propose novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (signal and object)-domain curvature regularization model. In what follows, we develop efficient optimization algorithms relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, for which all solvers can be implemented on GPUs. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. Based on GPU computing, our algorithm is the most effective among iterative methods, balancing reconstruction quality and computational time. All our codes and data are available at //github.com/Duanlab123/CurvNLOS.

We consider the weak convergence of the Euler-Maruyama approximation for Schr\"odinger-F\"ollmer diffusions, which are solutions of Schr\"odinger bridge problems and can be used for sampling from given distributions. We show that the distribution of the terminal random variable of the time-discretized process weakly converges to the target one under mild regularity conditions.

We consider the reliable implementation of an adaptive high-order unfitted finite element method on Cartesian meshes for solving elliptic interface problems with geometrically curved singularities. We extend our previous work on the reliable cell merging algorithm for smooth interfaces to automatically generate the induced mesh for piecewise smooth interfaces. An $hp$ a posteriori error estimate is derived for a new unfitted finite element method whose finite element functions are conforming in each subdomain. Numerical examples illustrate the competitive performance of the method.

Researchers in many fields endeavor to estimate treatment effects by regressing outcome data (Y) on a treatment (D) and observed confounders (X). Even absent unobserved confounding, the regression coefficient on the treatment reports a weighted average of strata-specific treatment effects (Angrist, 1998). Where heterogeneous treatment effects cannot be ruled out, the resulting coefficient is thus not generally equal to the average treatment effect (ATE), and is unlikely to be the quantity of direct scientific or policy interest. The difference between the coefficient and the ATE has led researchers to propose various interpretational, bounding, and diagnostic aids (Humphreys, 2009; Aronow and Samii, 2016; Sloczynski, 2022; Chattopadhyay and Zubizarreta, 2023). We note that the linear regression of Y on D and X can be misspecified when the treatment effect is heterogeneous in X. The "weights of regression", for which we provide a new (more general) expression, simply characterize how the OLS coefficient will depart from the ATE under the misspecification resulting from unmodeled treatment effect heterogeneity. Consequently, a natural alternative to suffering these weights is to address the misspecification that gives rise to them. For investigators committed to linear approaches, we propose relying on the slightly weaker assumption that the potential outcomes are linear in X. Numerous well-known estimators are unbiased for the ATE under this assumption, namely regression-imputation/g-computation/T-learner, regression with an interaction of the treatment and covariates (Lin, 2013), and balancing weights. Any of these approaches avoid the apparent weighting problem of the misspecified linear regression, at an efficiency cost that will be small when there are few covariates relative to sample size. We demonstrate these lessons using simulations in observational and experimental settings.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

北京阿比特科技有限公司