亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Protein representation learning methods have shown great potential to yield useful representation for many downstream tasks, especially on protein classification. Moreover, a few recent studies have shown great promise in addressing insufficient labels of proteins with self-supervised learning methods. However, existing protein language models are usually pretrained on protein sequences without considering the important protein structural information. To this end, we propose a novel structure-aware protein self-supervised learning method to effectively capture structural information of proteins. In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information with self-supervised tasks from a pairwise residue distance perspective and a dihedral angle perspective, respectively. Furthermore, we propose to leverage the available protein language model pretrained on protein sequences to enhance the self-supervised learning. Specifically, we identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme. Experiments on several supervised downstream tasks verify the effectiveness of our proposed method.

相關內容

Traditional supervised bearing fault diagnosis methods rely on massive labelled data, yet annotations may be very time-consuming or infeasible. The fault diagnosis approach that utilizes limited labelled data is becoming increasingly popular. In this paper, a Wavelet Transform (WT) and self-supervised learning-based bearing fault diagnosis framework is proposed to address the lack of supervised samples issue. Adopting the WT and cubic spline interpolation technique, original measured vibration signals are converted to the time-frequency maps (TFMs) with a fixed scale as inputs. The Vision Transformer (ViT) is employed as the encoder for feature extraction, and the self-distillation with no labels (DINO) algorithm is introduced in the proposed framework for self-supervised learning with limited labelled data and sufficient unlabeled data. Two rolling bearing fault datasets are used for validations. In the case of both datasets only containing 1% labelled samples, utilizing the feature vectors extracted by the trained encoder without fine-tuning, over 90\% average diagnosis accuracy can be obtained based on the simple K-Nearest Neighbor (KNN) classifier. Furthermore, the superiority of the proposed method is demonstrated in comparison with other self-supervised fault diagnosis methods.

As an important branch in Recommender System, occasional group recommendation has received more and more attention. In this scenario, each occasional group (cold-start group) has no or few historical interacted items. As each occasional group has extremely sparse interactions with items, traditional group recommendation methods can not learn high-quality group representations. The recent proposed Graph Neural Networks (GNNs), which incorporate the high-order neighbors of the target occasional group, can alleviate the above problem in some extent. However, these GNNs still can not explicitly strengthen the embedding quality of the high-order neighbors with few interactions. Motivated by the Self-supervised Learning technique, which is able to find the correlations within the data itself, we propose a self-supervised graph learning framework, which takes the user/item/group embedding reconstruction as the pretext task to enhance the embeddings of the cold-start users/items/groups. In order to explicitly enhance the high-order cold-start neighbors' embedding quality, we further introduce an embedding enhancer, which leverages the self-attention mechanism to improve the embedding quality for them. Comprehensive experiments show the advantages of our proposed framework than the state-of-the-art methods.

Node classification on graphs is an important task in many practical domains. It usually requires labels for training, which can be difficult or expensive to obtain in practice. Given a budget for labelling, active learning aims to improve performance by carefully choosing which nodes to label. Previous graph active learning methods learn representations using labelled nodes and select some unlabelled nodes for label acquisition. However, they do not fully utilize the representation power present in unlabelled nodes. We argue that the representation power in unlabelled nodes can be useful for active learning and for further improving performance of active learning for node classification. In this paper, we propose a latent space clustering-based active learning framework for node classification (LSCALE), where we fully utilize the representation power in both labelled and unlabelled nodes. Specifically, to select nodes for labelling, our framework uses the K-Medoids clustering algorithm on a latent space based on a dynamic combination of both unsupervised features and supervised features. In addition, we design an incremental clustering module to avoid redundancy between nodes selected at different steps. Extensive experiments on five datasets show that our proposed framework LSCALE consistently and significantly outperforms the stateof-the-art approaches by a large margin.

Deep learning on graphs has attracted significant interests recently. However, most of the works have focused on (semi-) supervised learning, resulting in shortcomings including heavy label reliance, poor generalization, and weak robustness. To address these issues, self-supervised learning (SSL), which extracts informative knowledge through well-designed pretext tasks without relying on manual labels, has become a promising and trending learning paradigm for graph data. Different from SSL on other domains like computer vision and natural language processing, SSL on graphs has an exclusive background, design ideas, and taxonomies. Under the umbrella of graph self-supervised learning, we present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data. We construct a unified framework that mathematically formalizes the paradigm of graph SSL. According to the objectives of pretext tasks, we divide these approaches into four categories: generation-based, auxiliary property-based, contrast-based, and hybrid approaches. We further conclude the applications of graph SSL across various research fields and summarize the commonly used datasets, evaluation benchmark, performance comparison and open-source codes of graph SSL. Finally, we discuss the remaining challenges and potential future directions in this research field.

Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.

Graphs are widely used as a popular representation of the network structure of connected data. Graph data can be found in a broad spectrum of application domains such as social systems, ecosystems, biological networks, knowledge graphs, and information systems. With the continuous penetration of artificial intelligence technologies, graph learning (i.e., machine learning on graphs) is gaining attention from both researchers and practitioners. Graph learning proves effective for many tasks, such as classification, link prediction, and matching. Generally, graph learning methods extract relevant features of graphs by taking advantage of machine learning algorithms. In this survey, we present a comprehensive overview on the state-of-the-art of graph learning. Special attention is paid to four categories of existing graph learning methods, including graph signal processing, matrix factorization, random walk, and deep learning. Major models and algorithms under these categories are reviewed respectively. We examine graph learning applications in areas such as text, images, science, knowledge graphs, and combinatorial optimization. In addition, we discuss several promising research directions in this field.

Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

北京阿比特科技有限公司