亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The separate tasks of denoising, conditional expectation and manifold learning can often be posed in a common setting of finding the conditional expectations arising from a product of two random variables. This paper focuses on this more general problem and describes an operator theoretic approach to estimating the conditional expectation. Kernel integral operators are used as a compactification tool, to set up the estimation problem as a linear inverse problem in a reproducing kernel Hilbert space. This equation is shown to have solutions that are stable to numerical approximation, thus guaranteeing the convergence of data-driven implementations. The overall technique is easy to implement, and their successful application to some real-world problems are also shown.

相關內容

Selective inference methods are developed for group lasso estimators for use with a wide class of distributions and loss functions. The method includes the use of exponential family distributions, as well as quasi-likelihood modeling for overdispersed count data, for example, and allows for categorical or grouped covariates as well as continuous covariates. A randomized group-regularized optimization problem is studied. The added randomization allows us to construct a post-selection likelihood which we show to be adequate for selective inference when conditioning on the event of the selection of the grouped covariates. This likelihood also provides a selective point estimator, accounting for the selection by the group lasso. Confidence regions for the regression parameters in the selected model take the form of Wald-type regions and are shown to have bounded volume. The selective inference method for grouped lasso is illustrated on data from the national health and nutrition examination survey while simulations showcase its behaviour and favorable comparison with other methods.

The application of deep learning to non-stationary temporal datasets can lead to overfitted models that underperform under regime changes. In this work, we propose a modular machine learning pipeline for ranking predictions on temporal panel datasets which is robust under regime changes. The modularity of the pipeline allows the use of different models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks, with and without feature engineering. We evaluate our framework on financial data for stock portfolio prediction, and find that GBDT models with dropout display high performance, robustness and generalisability with reduced complexity and computational cost. We then demonstrate how online learning techniques, which require no retraining of models, can be used post-prediction to enhance the results. First, we show that dynamic feature projection improves robustness by reducing drawdown in regime changes. Second, we demonstrate that dynamical model ensembling based on selection of models with good recent performance leads to improved Sharpe and Calmar ratios of out-of-sample predictions. We also evaluate the robustness of our pipeline across different data splits and random seeds with good reproducibility.

By combining a logarithm transformation with a corrected Milstein-type method, the present article proposes an explicit, unconditional boundary and dynamics preserving scheme for the stochastic susceptible-infected-susceptible (SIS) epidemic model that takes value in (0,N). The scheme applied to the model is first proved to have a strong convergence rate of order one. Further, the dynamic behaviors are analyzed for the numerical approximations and it is shown that the scheme can unconditionally preserve both the domain and the dynamics of the model. More precisely, the proposed scheme gives numerical approximations living in the domain (0,N) and reproducing the extinction and persistence properties of the original model for any time discretization step-size h > 0, without any additional requirements on the model parameters. Numerical experiments are presented to verify our theoretical results.

Neural networks have revolutionized the field of machine learning with increased predictive capability. In addition to improving the predictions of neural networks, there is a simultaneous demand for reliable uncertainty quantification on estimates made by machine learning methods such as neural networks. Bayesian neural networks (BNNs) are an important type of neural network with built-in capability for quantifying uncertainty. This paper discusses aleatoric and epistemic uncertainty in BNNs and how they can be calculated. With an example dataset of images where the goal is to identify the amplitude of an event in the image, it is shown that epistemic uncertainty tends to be lower in images which are well-represented in the training dataset and tends to be high in images which are not well-represented. An algorithm for out-of-distribution (OoD) detection with BNN epistemic uncertainty is introduced along with various experiments demonstrating factors influencing the OoD detection capability in a BNN. The OoD detection capability with epistemic uncertainty is shown to be comparable to the OoD detection in the discriminator network of a generative adversarial network (GAN) with comparable network architecture.

A variant of the standard notion of branching bisimilarity for processes with discrete relative timing is proposed which is coarser than the standard notion. Using a version of ACP (Algebra of Communicating Processes) with abstraction for processes with discrete relative timing, it is shown that the proposed variant allows of both the functional correctness and the performance properties of the PAR (Positive Acknowledgement with Retransmission) protocol to be analyzed. In the version of ACP concerned, the difference between the standard notion of branching bisimilarity and its proposed variant is characterized by a single axiom schema.

Linear statistics of point processes yield Monte Carlo estimators of integrals. While the simplest approach relies on a homogeneous Poisson point process, more regularly spread point processes, such as scrambled low-discrepancy sequences or determinantal point processes, can yield Monte Carlo estimators with fast-decaying mean square error. Following the intuition that more regular configurations result in lower integration error, we introduce the repulsion operator, which reduces clustering by slightly pushing the points of a configuration away from each other. Our main theoretical result is that applying the repulsion operator to a homogeneous Poisson point process yields an unbiased Monte Carlo estimator with lower variance than under the original point process. On the computational side, the evaluation of our estimator is only quadratic in the number of integrand evaluations and can be easily parallelized without any communication across tasks. We illustrate our variance reduction result with numerical experiments and compare it to popular Monte Carlo methods. Finally, we numerically investigate a few open questions on the repulsion operator. In particular, the experiments suggest that the variance reduction also holds when the operator is applied to other motion-invariant point processes.

Compared to widely used likelihood-based approaches, the minimum contrast (MC) method is a computationally efficient method for estimation and inference of parametric stationary point processes. This advantage becomes more pronounced when analyzing complex point process models, such as multivariate log-Gaussian Cox processes (LGCP). Despite its practical advantages, there is very little work on the MC method for multivariate point processes. The aim of this article is to introduce a new MC method for parametric multivariate stationary spatial point processes. A contrast function is calculated based on the trace of the power of the difference between the conjectured $K$-function matrix and its nonparametric unbiased edge-corrected estimator. Under standard assumptions, the asymptotic normality of the MC estimator of the model parameters is derived. The performance of the proposed method is illustrated with bivariate LGCP simulations and a real data analysis of a bivariate point pattern of the 2014 terrorist attacks in Nigeria.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司