亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Agents must be able to adapt quickly as an environment changes. We find that existing model-based reinforcement learning agents are unable to do this well, in part because of how they use past experiences to train their world model. Here, we present Curious Replay -- a form of prioritized experience replay tailored to model-based agents through use of a curiosity-based priority signal. Agents using Curious Replay exhibit improved performance in an exploration paradigm inspired by animal behavior and on the Crafter benchmark. DreamerV3 with Curious Replay surpasses state-of-the-art performance on Crafter, achieving a mean score of 19.4 that substantially improves on the previous high score of 14.5 by DreamerV3 with uniform replay, while also maintaining similar performance on the Deepmind Control Suite. Code for Curious Replay is available at //github.com/AutonomousAgentsLab/curiousreplay

相關內容

Counterfactual explanations are an emerging tool to enhance interpretability of deep learning models. Given a sample, these methods seek to find and display to the user similar samples across the decision boundary. In this paper, we propose a generative adversarial counterfactual approach for satellite image time series in a multi-class setting for the land cover classification task. One of the distinctive features of the proposed approach is the lack of prior assumption on the targeted class for a given counterfactual explanation. This inherent flexibility allows for the discovery of interesting information on the relationship between land cover classes. The other feature consists of encouraging the counterfactual to differ from the original sample only in a small and compact temporal segment. These time-contiguous perturbations allow for a much sparser and, thus, interpretable solution. Furthermore, plausibility/realism of the generated counterfactual explanations is enforced via the proposed adversarial learning strategy.

Collaborative filtering-based recommender systems (RecSys) rely on learning representations for users and items to predict preferences accurately. Representation learning on the hypersphere is a promising approach due to its desirable properties, such as alignment and uniformity. However, the sparsity issue arises when it encounters RecSys. To address this issue, we propose a novel approach, graph-based alignment and uniformity (GraphAU), that explicitly considers high-order connectivities in the user-item bipartite graph. GraphAU aligns the user/item embedding to the dense vector representations of high-order neighbors using a neighborhood aggregator, eliminating the need to compute the burdensome alignment to high-order neighborhoods individually. To address the discrepancy in alignment losses, GraphAU includes a layer-wise alignment pooling module to integrate alignment losses layer-wise. Experiments on four datasets show that GraphAU significantly alleviates the sparsity issue and achieves state-of-the-art performance. We open-source GraphAU at //github.com/YangLiangwei/GraphAU.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Spatio-temporal representation learning is critical for video self-supervised representation. Recent approaches mainly use contrastive learning and pretext tasks. However, these approaches learn representation by discriminating sampled instances via feature similarity in the latent space while ignoring the intermediate state of the learned representations, which limits the overall performance. In this work, taking into account the degree of similarity of sampled instances as the intermediate state, we propose a novel pretext task - spatio-temporal overlap rate (STOR) prediction. It stems from the observation that humans are capable of discriminating the overlap rates of videos in space and time. This task encourages the model to discriminate the STOR of two generated samples to learn the representations. Moreover, we employ a joint optimization combining pretext tasks with contrastive learning to further enhance the spatio-temporal representation learning. We also study the mutual influence of each component in the proposed scheme. Extensive experiments demonstrate that our proposed STOR task can favor both contrastive learning and pretext tasks. The joint optimization scheme can significantly improve the spatio-temporal representation in video understanding. The code is available at //github.com/Katou2/CSTP.

The ad-hoc retrieval task is to rank related documents given a query and a document collection. A series of deep learning based approaches have been proposed to solve such problem and gained lots of attention. However, we argue that they are inherently based on local word sequences, ignoring the subtle long-distance document-level word relationships. To solve the problem, we explicitly model the document-level word relationship through the graph structure, capturing the subtle information via graph neural networks. In addition, due to the complexity and scale of the document collections, it is considerable to explore the different grain-sized hierarchical matching signals at a more general level. Therefore, we propose a Graph-based Hierarchical Relevance Matching model (GHRM) for ad-hoc retrieval, by which we can capture the subtle and general hierarchical matching signals simultaneously. We validate the effects of GHRM over two representative ad-hoc retrieval benchmarks, the comprehensive experiments and results demonstrate its superiority over state-of-the-art methods.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司