亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In decision modelling with time to event data, parametric models are often used to extrapolate the survivor function. One such model is the piecewise exponential model whereby the hazard function is partitioned into segments, with the hazard constant within the segment and independent between segments and the boundaries of these segments are known as change-points. We present an approach for determining the location and number of change-points in piecewise exponential models. Inference is performed in a Bayesian framework using Markov Chain Monte Carlo (MCMC) where the model parameters can be integrated out of the model and the number of change-points can be sampled as part of the MCMC scheme. We can estimate both the uncertainty in the change-point locations and hazards for a given change-point model and obtain a probabilistic interpretation for the number of change-points. We evaluate model performance to determine changepoint numbers and locations in a simulation study and show the utility of the method using two data sets for time to event data. In a dataset of Glioblastoma patients we use the piecewise exponential model to describe the general trends in the hazard function. In a data set of heart transplant patients, we show the piecewise exponential model produces the best statistical fit and extrapolation amongst other standard parametric models. Piecewise exponential models may be useful for survival extrapolation if a long-term constant hazard trend is clinically plausible. A key advantage of this method is that the number and change-point locations are automatically estimated rather than specified by the analyst.

相關內容

The estimation of parameter standard errors for semi-variogram models is challenging, given the two-step process required to fit a parametric model to spatially correlated data. Motivated by an application in the social-epidemiology, we focus on exponential semi-variogram models fitted to data between 500 to 2000 observations and little control over the sampling design. Previously proposed methods for the estimation of standard errors cannot be applied in this context. Approximate closed form solutions are too costly using generalized least squares in terms of memory capacities. The generalized bootstrap proposed by Olea and Pardo-Ig\'uzquiza is nonetheless applicable with weighted instead of generalized least squares. However, the standard error estimates are hugely biased and imprecise. Therefore, we propose a filtering method added to the generalized bootstrap. The new development is presented and evaluated with a simulation study which shows that the generalized bootstrap with check-based filtering leads to massively improved results compared to the quantile-based filter method and previously developed approaches. We provide a case study using birthweight data.

With increasing amounts of music being digitally transferred from production to distribution, automatic means of determining media quality are needed. Protection mechanisms in digital audio processing tools have not eliminated the need of production entities located downstream the distribution chain to assess audio quality and detect defects inserted further upstream. Such analysis often relies on the received audio and scarce meta-data alone. Deliberate use of artefacts such as clicks in popular music as well as more recent defects stemming from corruption in modern audio encodings call for data-centric and context sensitive solutions for detection. We present a convolutional network architecture following end-to-end encoder decoder configuration to develop detectors for two exemplary audio defects. A click detector is trained and compared to a traditional signal processing method, with a discussion on context sensitivity. Additional post-processing is used for data augmentation and workflow simulation. The ability of our models to capture variance is explored in a detector for artefacts from decompression of corrupted MP3 compressed audio. For both tasks we describe the synthetic generation of artefacts for controlled detector training and evaluation. We evaluate our detectors on the large open-source Free Music Archive (FMA) and genre-specific datasets.

This paper considers identification and estimation of the causal effect of the time Z until a subject is treated on a survival outcome T. The treatment is not randomly assigned, T is randomly right censored by a random variable C and the time to treatment Z is right censored by min(T,C). The endogeneity issue is treated using an instrumental variable explaining Z and independent of the error term of the model. We study identification in a fully nonparametric framework. We show that our specification generates an integral equation, of which the regression function of interest is a solution. We provide identification conditions that rely on this identification equation. For estimation purposes, we assume that the regression function follows a parametric model. We propose an estimation procedure and give conditions under which the estimator is asymptotically normal. The estimators exhibit good finite sample properties in simulations. Our methodology is applied to find evidence supporting the efficacy of a therapy for burn-out.

Learning data representations under uncertainty is an important task that emerges in numerous machine learning applications. However, uncertainty quantification (UQ) techniques are computationally intensive and become prohibitively expensive for high-dimensional data. In this paper, we present a novel surrogate model for representation learning and uncertainty quantification, which aims to deal with data of moderate to high dimensions. The proposed model combines a neural network approach for dimensionality reduction of the (potentially high-dimensional) data, with a surrogate model method for learning the data distribution. We first employ a variational autoencoder (VAE) to learn a low-dimensional representation of the data distribution. We then propose to harness polynomial chaos expansion (PCE) formulation to map this distribution to the output target. The coefficients of PCE are learned from the distribution representation of the training data using a maximum mean discrepancy (MMD) approach. Our model enables us to (a) learn a representation of the data, (b) estimate uncertainty in the high-dimensional data system, and (c) match high order moments of the output distribution; without any prior statistical assumptions on the data. Numerical experimental results are presented to illustrate the performance of the proposed method.

The major problem of fitting a higher order Markov model is the exponentially growing number of parameters. The most popular approach is to use a Variable Length Markov Chain (VLMC), which determines relevant contexts (recent pasts) of variable orders and form a context tree. A more general approach is called Sparse Markov Model (SMM), where all possible histories of order $m$ form a partition so that the transition probability vectors are identical for the histories belonging to a particular group. We develop an elegant method of fitting SMM using convex clustering, which involves regularization. The regularization parameter is selected using BIC criterion. Theoretical results demonstrate the model selection consistency of our method for large sample size. Extensive simulation studies under different set-up have been presented to measure the performance of our method. We apply this method to classify genome sequences, obtained from individuals affected by different viruses.

We investigate the large-sample behavior of change-point tests based on weighted two-sample U-statistics, in the case of short-range dependent data. Under some mild mixing conditions, we establish convergence of the test statistic to an extreme value distribution. A simulation study shows that the weighted tests are superior to the non-weighted versions when the change-point occurs near the boundary of the time interval, while they loose power in the center.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

Data augmentation has been widely used for training deep learning systems for medical image segmentation and plays an important role in obtaining robust and transformation-invariant predictions. However, it has seldom been used at test time for segmentation and not been formulated in a consistent mathematical framework. In this paper, we first propose a theoretical formulation of test-time augmentation for deep learning in image recognition, where the prediction is obtained through estimating its expectation by Monte Carlo simulation with prior distributions of parameters in an image acquisition model that involves image transformations and noise. We then propose a novel uncertainty estimation method based on the formulated test-time augmentation. Experiments with segmentation of fetal brains and brain tumors from 2D and 3D Magnetic Resonance Images (MRI) showed that 1) our test-time augmentation outperforms a single-prediction baseline and dropout-based multiple predictions, and 2) it provides a better uncertainty estimation than calculating the model-based uncertainty alone and helps to reduce overconfident incorrect predictions.

Many problems on signal processing reduce to nonparametric function estimation. We propose a new methodology, piecewise convex fitting (PCF), and give a two-stage adaptive estimate. In the first stage, the number and location of the change points is estimated using strong smoothing. In the second stage, a constrained smoothing spline fit is performed with the smoothing level chosen to minimize the MSE. The imposed constraint is that a single change point occurs in a region about each empirical change point of the first-stage estimate. This constraint is equivalent to requiring that the third derivative of the second-stage estimate has a single sign in a small neighborhood about each first-stage change point. We sketch how PCF may be applied to signal recovery, instantaneous frequency estimation, surface reconstruction, image segmentation, spectral estimation and multivariate adaptive regression.

We propose a new nonlinear embedding -- Piecewise Flat Embedding (PFE) -- for image segmentation. Based on the theory of sparse signal recovery, piecewise flat embedding attempts to recover a piecewise constant image representation with sparse region boundaries and sparse cluster value scattering. The resultant piecewise flat embedding exhibits interesting properties such as suppressing slowly varying signals, and offers an image representation with higher region identifiability which is desirable for image segmentation or high-level semantic analysis tasks. We formulate our embedding as a variant of the Laplacian Eigenmap embedding with an $L_{1,p} (0<p\leq1)$ regularization term to promote sparse solutions. First, we devise a two-stage numerical algorithm based on Bregman iterations to compute $L_{1,1}$-regularized piecewise flat embeddings. We further generalize this algorithm through iterative reweighting to solve the general $L_{1,p}$-regularized problem. To demonstrate its efficacy, we integrate PFE into two existing image segmentation frameworks, segmentation based on clustering and hierarchical segmentation based on contour detection. Experiments on four major benchmark datasets, BSDS500, MSRC, Stanford Background Dataset, and PASCAL Context, show that segmentation algorithms incorporating our embedding achieve significantly improved results.

北京阿比特科技有限公司