Federated Learning (FL) has recently made significant progress as a new machine learning paradigm for privacy protection. Due to the high communication cost of traditional FL, one-shot federated learning is gaining popularity as a way to reduce communication cost between clients and the server. Most of the existing one-shot FL methods are based on Knowledge Distillation; however, {distillation based approach requires an extra training phase and depends on publicly available data sets or generated pseudo samples.} In this work, we consider a novel and challenging cross-silo setting: performing a single round of parameter aggregation on the local models without server-side training. In this setting, we propose an effective algorithm for Model Aggregation via Exploring Common Harmonized Optima (MA-Echo), which iteratively updates the parameters of all local models to bring them close to a common low-loss area on the loss surface, without harming performance on their own data sets at the same time. Compared to the existing methods, MA-Echo can work well even in extremely non-identical data distribution settings where the support categories of each local model have no overlapped labels with those of the others. We conduct extensive experiments on two popular image classification data sets to compare the proposed method with existing methods and demonstrate the effectiveness of MA-Echo, which clearly outperforms the state-of-the-arts. The source code can be accessed in \url{//github.com/FudanVI/MAEcho}.
Federated Learning (FL) is a machine learning paradigm where many clients collaboratively learn a shared global model with decentralized training data. Personalized FL additionally adapts the global model to different clients, achieving promising results on consistent local training and test distributions. However, for real-world personalized FL applications, it is crucial to go one step further: robustifying FL models under the evolving local test set during deployment, where various distribution shifts can arise. In this work, we identify the pitfalls of existing works under test-time distribution shifts and propose Federated Test-time Head Ensemble plus tuning(FedTHE+), which personalizes FL models with robustness to various test-time distribution shifts. We illustrate the advancement of FedTHE+ (and its computationally efficient variant FedTHE) over strong competitors, by training various neural architectures (CNN, ResNet, and Transformer) on CIFAR10 andImageNet with various test distributions. Along with this, we build a benchmark for assessing the performance and robustness of personalized FL methods during deployment. Code: //github.com/LINs-lab/FedTHE.
Cyberattacks are increasingly threatening networked systems, often with the emergence of new types of unknown (zero-day) attacks and the rise of vulnerable devices. While Machine Learning (ML)-based Intrusion Detection Systems (IDSs) have been shown to be extremely promising in detecting these attacks, the need to learn large amounts of labelled data often limits the applicability of ML-based IDSs to cybersystems that only have access to private local data. To address this issue, this paper proposes a novel Decentralized and Online Federated Learning Intrusion Detection (DOF-ID) architecture. DOF-ID is a collaborative learning system that allows each IDS used for a cybersystem to learn from experience gained in other cybersystems in addition to its own local data without violating the data privacy of other systems. As the performance evaluation results using public Kitsune and Bot-IoT datasets show, DOF-ID significantly improves the intrusion detection performance in all collaborating nodes simultaneously with acceptable computation time for online learning.
Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients may only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as federated few-shot learning. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines. Our code is provided at //github.com/SongW-SW/F2L.
Federated learning (FL) has found numerous applications in healthcare, finance, and IoT scenarios. Many existing FL frameworks offer a range of benchmarks to evaluate the performance of FL under realistic conditions. However, the process of customizing simulations to accommodate application-specific settings, data heterogeneity, and system heterogeneity typically remains unnecessarily complicated. This creates significant hurdles for traditional ML researchers in exploring the usage of FL, while also compromising the shareability of codes across FL frameworks. To address this issue, we propose a novel lightweight FL platform called FLGo, to facilitate cross-application FL studies with a high degree of shareability. Our platform offers 40+ benchmarks, 20+ algorithms, and 2 system simulators as out-of-the-box plugins. We also provide user-friendly APIs for quickly customizing new plugins that can be readily shared and reused for improved reproducibility. Finally, we develop a range of experimental tools, including parallel acceleration, experiment tracker and analyzer, and parameters auto-tuning. FLGo is maintained at \url{flgo-xmu.github.io}.
Federated learning (FL) is a common and practical framework for learning a machine model in a decentralized fashion. A primary motivation behind this decentralized approach is data privacy, ensuring that the learner never sees the data of each local source itself. Federated learning then comes with two majors challenges: one is handling potentially complex model updates between a server and a large number of data sources; the other is that de-centralization may, in fact, be insufficient for privacy, as the local updates themselves can reveal information about the sources' data. To address these issues, we consider an approach to federated learning that combines quantization and differential privacy. Absent privacy, Federated Learning often relies on quantization to reduce communication complexity. We build upon this approach and develop a new algorithm called the \textbf{R}andomized \textbf{Q}uantization \textbf{M}echanism (RQM), which obtains privacy through a two-levels of randomization. More precisely, we randomly sub-sample feasible quantization levels, then employ a randomized rounding procedure using these sub-sampled discrete levels. We are able to establish that our results preserve ``Renyi differential privacy'' (Renyi DP). We empirically study the performance of our algorithm and demonstrate that compared to previous work it yields improved privacy-accuracy trade-offs for DP federated learning. To the best of our knowledge, this is the first study that solely relies on randomized quantization without incorporating explicit discrete noise to achieve Renyi DP guarantees in Federated Learning systems.
Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.