亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Voice assistants have sharply risen in popularity in recent years, but their use has been limited mostly to simple applications like music, hands-free search, or control of internet-of-things devices. What would it take for voice assistants to guide people through more complex tasks? In our work, we study the limitations of the dominant approach voice assistants take to complex task guidance: reading aloud written instructions. Using recipes as an example, we observe twelve participants cook at home with a state-of-the-art voice assistant. We learn that the current approach leads to nine challenges, including obscuring the bigger picture, overwhelming users with too much information, and failing to communicate affordances. Instructions delivered by a voice assistant are especially difficult because they cannot be skimmed as easily as written instructions. Alexa in particular did not surface crucial details to the user or answer questions well. We draw on our observations to propose eight ways in which voice assistants can ``rewrite the script'' -- summarizing, signposting, splitting, elaborating, volunteering, reordering, redistributing, and visualizing -- to transform written sources into forms that are readily communicated through spoken conversation. We conclude with a vision of how modern advancements in natural language processing can be leveraged for intelligent agents to guide users effectively through complex tasks.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Performer · 樣本 · 潛在 · INFORMS ·
2023 年 8 月 8 日

Although many deep-learning-based super-resolution approaches have been proposed in recent years, because no ground truth is available in the inference stage, few can quantify the errors and uncertainties of the super-resolved results. For scientific visualization applications, however, conveying uncertainties of the results to scientists is crucial to avoid generating misleading or incorrect information. In this paper, we propose PSRFlow, a novel normalizing flow-based generative model for scientific data super-resolution that incorporates uncertainty quantification into the super-resolution process. PSRFlow learns the conditional distribution of the high-resolution data based on the low-resolution counterpart. By sampling from a Gaussian latent space that captures the missing information in the high-resolution data, one can generate different plausible super-resolution outputs. The efficient sampling in the Gaussian latent space allows our model to perform uncertainty quantification for the super-resolved results. During model training, we augment the training data with samples across various scales to make the model adaptable to data of different scales, achieving flexible super-resolution for a given input. Our results demonstrate superior performance and robust uncertainty quantification compared with existing methods such as interpolation and GAN-based super-resolution networks.

For a machine learning model to generalize effectively to unseen data within a particular problem domain, it is well-understood that the data needs to be of sufficient size and representative of real-world scenarios. Nonetheless, real-world datasets frequently have overrepresented and underrepresented groups. One solution to mitigate bias in machine learning is to leverage a diverse and representative dataset. Training a model on a dataset that covers all demographics is crucial to reducing bias in machine learning. However, collecting and labeling large-scale datasets has been challenging, prompting the use of synthetic data generation and active labeling to decrease the costs of manual labeling. The focus of this study was to generate a robust face image dataset using the StyleGAN model. In order to achieve a balanced distribution of the dataset among different demographic groups, a synthetic dataset was created by controlling the generation process of StyleGaN and annotated for different downstream tasks.

The dynamic ranking, due to its increasing importance in many applications, is becoming crucial, especially with the collection of voluminous time-dependent data. One such application is sports statistics, where dynamic ranking aids in forecasting the performance of competitive teams, drawing on historical and current data. Despite its usefulness, predicting and inferring rankings pose challenges in environments necessitating time-dependent modeling. This paper introduces a spectral ranker called Kernel Rank Centrality, designed to rank items based on pairwise comparisons over time. The ranker operates via kernel smoothing in the Bradley-Terry model, utilizing a Markov chain model. Unlike the maximum likelihood approach, the spectral ranker is nonparametric, demands fewer model assumptions and computations, and allows for real-time ranking. We establish the asymptotic distribution of the ranker by applying an innovative group inverse technique, resulting in a uniform and precise entrywise expansion. This result allows us to devise a new inferential method for predictive inference, previously unavailable in existing approaches. Our numerical examples showcase the ranker's utility in predictive accuracy and constructing an uncertainty measure for prediction, leveraging data from the National Basketball Association (NBA). The results underscore our method's potential compared to the gold standard in sports, the Arpad Elo rating system.

The detection of disfluencies such as hesitations, repetitions and false starts commonly found in speech is a widely studied area of research. With a standardised process for evaluation using the Switchboard Corpus, model performance can be easily compared across approaches. This is not the case for disfluency detection research on learner speech, however, where such datasets have restricted access policies, making comparison and subsequent development of improved models more challenging. To address this issue, this paper describes the adaptation of the NICT-JLE corpus, containing approximately 300 hours of English learners' oral proficiency tests, to a format that is suitable for disfluency detection model training and evaluation. Points of difference between the NICT-JLE and Switchboard corpora are explored, followed by a detailed overview of adaptations to the tag set and meta-features of the NICT-JLE corpus. The result of this work provides a standardised train, heldout and test set for use in future research on disfluency detection for learner speech.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司