The scale-up of autonomous vehicles depends heavily on their ability to deal with anomalies, such as rare objects on the road. In order to handle such situations, it is necessary to detect anomalies in the first place. Anomaly detection for autonomous driving has made great progress in the past years but suffers from poorly designed benchmarks with a strong focus on camera data. In this work, we propose AnoVox, the largest benchmark for ANOmaly detection in autonomous driving to date. AnoVox incorporates large-scale multimodal sensor data and spatial VOXel ground truth, allowing for the comparison of methods independent of their used sensor. We propose a formal definition of normality and provide a compliant training dataset. AnoVox is the first benchmark to contain both content and temporal anomalies.
To handle the vast amounts of qualitative data produced in corporate climate communication, stakeholders increasingly rely on Retrieval Augmented Generation (RAG) systems. However, a significant gap remains in evaluating domain-specific information retrieval - the basis for answer generation. To address this challenge, this work simulates the typical tasks of a sustainability analyst by examining 30 sustainability reports with 16 detailed climate-related questions. As a result, we obtain a dataset with over 8.5K unique question-source-answer pairs labeled by different levels of relevance. Furthermore, we develop a use case with the dataset to investigate the integration of expert knowledge into information retrieval with embeddings. Although we show that incorporating expert knowledge works, we also outline the critical limitations of embeddings in knowledge-intensive downstream domains like climate change communication.
With the advancement of autonomous driving, ensuring safety during motion planning and navigation is becoming more and more important. However, most end-to-end planning methods suffer from a lack of safety. This research addresses the safety issue in the control optimization problem of autonomous driving, formulated as Constrained Markov Decision Processes (CMDPs). We propose a novel, model-based approach for policy optimization, utilizing a conditional Value-at-Risk based Soft Actor Critic to manage constraints in complex, high-dimensional state spaces effectively. Our method introduces a worst-case actor to guide safe exploration, ensuring rigorous adherence to safety requirements even in unpredictable scenarios. The policy optimization employs the Augmented Lagrangian method and leverages latent diffusion models to predict and simulate future trajectories. This dual approach not only aids in navigating environments safely but also refines the policy's performance by integrating distribution modeling to account for environmental uncertainties. Empirical evaluations conducted in both simulated and real environment demonstrate that our approach outperforms existing methods in terms of safety, efficiency, and decision-making capabilities.
Recently, unmanned aerial vehicle (UAV) has attracted much attention due to its flexible deployment and controllable mobility. As the general communication network cannot meet the emergency requirements, in this paper we study the multi-UAV enabled wireless emergency communication system. Our goal is to maximize the capacity with jointly optimizing trajectory and allocating power. To tackle this non-convex optimization problem, we first decompose it into two sub-problems to optimize the trajectory and power allocation, respectively. Then, we propose the successive convex approximation technique and the block coordinate update algorithm to solve the two subproblems. The approximate optimal solution can be obtained after continuous iterations. Simulation results show that the capacity can be greatly increased using our proposed joint trajectory optimization and power allocation.
Python's dynamic typing system offers flexibility and expressiveness but can lead to type-related errors, prompting the need for automated type inference to enhance type hinting. While existing learning-based approaches show promising inference accuracy, they struggle with practical challenges in comprehensively handling various types, including complex generic types and (unseen) user-defined types. In this paper, we introduce TIGER, a two-stage generating-then-ranking (GTR) framework, designed to effectively handle Python's diverse type categories. TIGER leverages fine-tuned pre-trained code models to train a generative model with a span masking objective and a similarity model with a contrastive training objective. This approach allows TIGER to generate a wide range of type candidates, including complex generics in the generating stage, and accurately rank them with user-defined types in the ranking stage. Our evaluation on the ManyTypes4Py dataset shows TIGER's advantage over existing methods in various type categories, notably improving accuracy in inferring user-defined and unseen types by 11.2% and 20.1% respectively in Top-5 Exact Match. Moreover, the experimental results not only demonstrate TIGER's superior performance and efficiency, but also underscore the significance of its generating and ranking stages in enhancing automated type inference.
Prototype pollution is a recent vulnerability that affects JavaScript code, leading to high impact attacks such as arbitrary code execution. The vulnerability is rooted in JavaScript's prototype-based inheritance, enabling attackers to inject arbitrary properties into an object's prototype at runtime. The impact of prototype pollution depends on the existence of otherwise benign pieces of code (gadgets), which inadvertently read from attacker-controlled properties to execute security-sensitive operations. While prior works primarily study gadgets in third-party libraries and client-side applications, gadgets in JavaScript runtime environments are arguably more impactful as they affect any application that executes on these runtimes. In this paper we design, implement, and evaluate a pipeline, GHunter, to systematically detect gadgets in V8-based JavaScript runtimes with prime focus on Node.js and Deno. GHunter supports a lightweight dynamic taint analysis to automatically identify gadget candidates which we validate manually to derive proof-of-concept exploits. We implement GHunter by modifying the V8 engine and the targeted runtimes along with features for facilitating manual validation. Driven by the test suites of Node.js and Deno, we use GHunter in a study of gadgets in these runtimes. We identified a total of 56 new gadgets in Node.js and 67 gadgets in Deno, pertaining to vulnerabilities such as arbitrary code execution (19), privilege escalation (31), path traversal (13), and more. Moreover, we systematize, for the first time, existing mitigations for prototype pollution and gadgets in terms of development guidelines. We collect a list of vulnerable applications and revisit the fixes through the lens of our guidelines. Through this exercise, we identified one high-severity CVE leading to remote code execution, which was due to incorrectly fixing a gadget.
Explainable Artificial Intelligence (XAI) aims to improve the transparency of autonomous decision-making through explanations. Recent literature has emphasised users' need for holistic "multi-shot" explanations and the ability to personalise their engagement with XAI systems. We refer to this user-centred interaction as an XAI Experience. Despite advances in creating XAI experiences, evaluating them in a user-centred manner has remained challenging. To address this, we introduce the XAI Experience Quality (XEQ) Scale (pronounced "Seek" Scale), for evaluating the user-centred quality of XAI experiences. Furthermore, XEQ quantifies the quality of experiences across four evaluation dimensions: learning, utility, fulfilment and engagement. These contributions extend the state-of-the-art of XAI evaluation, moving beyond the one-dimensional metrics frequently developed to assess single-shot explanations. In this paper, we present the XEQ scale development and validation process, including content validation with XAI experts as well as discriminant and construct validation through a large-scale pilot study. Out pilot study results offer strong evidence that establishes the XEQ Scale as a comprehensive framework for evaluating user-centred XAI experiences.
Analog front-end design heavily relies on specialized human expertise and costly trial-and-error simulations, which motivated many prior works on analog design automation. However, efficient and effective exploration of the vast and complex design space remains constrained by the time-consuming nature of SPICE simulations, making effective design automation a challenging endeavor. In this paper, we introduce INSIGHT, a GPU-powered, technology-agnostic, effective universal neural simulator in the analog front-end design automation loop. INSIGHT accurately predicts the performance metrics of analog circuits across various technologies with just a few microseconds of inference time. Notably, its autoregressive capabilities enable INSIGHT to accurately predict simulation-costly critical transient specifications leveraging less expensive performance metric information. The low cost and high fidelity feature make INSIGHT a good substitute for standard simulators in analog front-end optimization frameworks. INSIGHT is compatible with any optimization framework, facilitating enhanced design space exploration for sample efficiency through sophisticated offline learning and adaptation techniques. Our experiments demonstrate that INSIGHT-M, a model-based batch reinforcement learning sizing framework with INSIGHT as the accurate surrogate, only requires < 20 real-time simulations with 100-1000x lower simulation costs and significant speedup over existing sizing methods.
Adversarial attack has garnered considerable attention due to its profound implications for the secure deployment of robots in sensitive security scenarios. To potentially push for advances in the field, this paper studies the adversarial attack in the black-box setting and proposes an unlabeled data-driven adversarial attack method, called SemiAdv. Specifically, SemiAdv achieves the following breakthroughs compared with previous works. First, by introducing the semi-supervised learning technique into the adversarial attack, SemiAdv substantially decreases the number of queries required for generating adversarial samples. On average, SemiAdv only needs to query a few hundred times to launch an effective attack with more than 90% success rate. Second, many existing black-box adversarial attacks require massive labeled data to mitigate the difference between the local substitute model and the remote target model for a good attack performance. While SemiAdv relaxes this limitation and is capable of utilizing unlabeled raw data to launch an effective attack. Finally, our experiments show that SemiAdv saves up to 12x query accesses for generating adversarial samples while maintaining a competitive attack success rate compared with state-of-the-art attacks.
This study sheds light on the imperative need to bolster safety and privacy measures in large language models (LLMs), such as GPT-4 and LLaMA-2, by identifying and mitigating their vulnerabilities through explainable analysis of prompt attacks. We propose Counterfactual Explainable Incremental Prompt Attack (CEIPA), a novel technique where we guide prompts in a specific manner to quantitatively measure attack effectiveness and explore the embedded defense mechanisms in these models. Our approach is distinctive for its capacity to elucidate the reasons behind the generation of harmful responses by LLMs through an incremental counterfactual methodology. By organizing the prompt modification process into four incremental levels: (word, sentence, character, and a combination of character and word) we facilitate a thorough examination of the susceptibilities inherent to LLMs. The findings from our study not only provide counterfactual explanation insight but also demonstrate that our framework significantly enhances the effectiveness of attack prompts.
Multimodal emotion recognition systems rely heavily on the full availability of modalities, suffering significant performance declines when modal data is incomplete. To tackle this issue, we present the Cross-Modal Alignment, Reconstruction, and Refinement (CM-ARR) framework, an innovative approach that sequentially engages in cross-modal alignment, reconstruction, and refinement phases to handle missing modalities and enhance emotion recognition. This framework utilizes unsupervised distribution-based contrastive learning to align heterogeneous modal distributions, reducing discrepancies and modeling semantic uncertainty effectively. The reconstruction phase applies normalizing flow models to transform these aligned distributions and recover missing modalities. The refinement phase employs supervised point-based contrastive learning to disrupt semantic correlations and accentuate emotional traits, thereby enriching the affective content of the reconstructed representations. Extensive experiments on the IEMOCAP and MSP-IMPROV datasets confirm the superior performance of CM-ARR under conditions of both missing and complete modalities. Notably, averaged across six scenarios of missing modalities, CM-ARR achieves absolute improvements of 2.11% in WAR and 2.12% in UAR on the IEMOCAP dataset, and 1.71% and 1.96% in WAR and UAR, respectively, on the MSP-IMPROV dataset.