Given a graph $G = (V, E)$, a non-empty set $S \subseteq V$ is a defensive alliance, if for every vertex $v \in S$, the majority of its closed neighbours are in $S$, that is, $|N_G[v] \cap S| \geq |N_G[v] \setminus S|$. The decision version of the problem is known to be NP-Complete even when restricted to split and bipartite graphs. The problem is \textit{fixed-parameter tractable} for the parameters solution size, vertex cover number and neighbourhood diversity. For the parameters treewidth and feedback vertex set number, the problem is W[1]-hard. \\ \hspace*{2em} In this paper, we study the defensive alliance problem for graphs with bounded degree. We show that the problem is \textit{polynomial-time solvable} on graphs with maximum degree at most 5 and NP-Complete on graphs with maximum degree 6. This rules out the fixed-parameter tractability of the problem for the parameter maximum degree of the graph. We also consider the problem from the standpoint of parameterized complexity. We provide an FPT algorithm using the Integer Linear Programming approach for the parameter distance to clique. We also answer an open question posed in \cite{AG2} by providing an FPT algorithm for the parameter twin cover.
We present GeGnn, a learning-based method for computing the approximate geodesic distance between two arbitrary points on discrete polyhedra surfaces with constant time complexity after fast precomputation. Previous relevant methods either focus on computing the geodesic distance between a single source and all destinations, which has linear complexity at least or require a long precomputation time. Our key idea is to train a graph neural network to embed an input mesh into a high-dimensional embedding space and compute the geodesic distance between a pair of points using the corresponding embedding vectors and a lightweight decoding function. To facilitate the learning of the embedding, we propose novel graph convolution and graph pooling modules that incorporate local geodesic information and are verified to be much more effective than previous designs. After training, our method requires only one forward pass of the network per mesh as precomputation. Then, we can compute the geodesic distance between a pair of points using our decoding function, which requires only several matrix multiplications and can be massively parallelized on GPUs. We verify the efficiency and effectiveness of our method on ShapeNet and demonstrate that our method is faster than existing methods by orders of magnitude while achieving comparable or better accuracy. Additionally, our method exhibits robustness on noisy and incomplete meshes and strong generalization ability on out-of-distribution meshes. The code and pretrained model can be found on //github.com/IntelligentGeometry/GeGnn.
The capture calculus is an extension of System F<: that tracks free variables of terms in their type, allowing one to represent capabilities while limiting their scope. While previous calculi had mechanized soundness proofs -- notably System CF<: -- the latest version, namely the box calculus (System CC<:box), only had a paper proof. We present here our work on mechanizing the theory of the box calculus in Coq, and the challenges encountered along the way. While doing so, we motivate the current design of capture calculus, in particular the concept of boxes, from both user and metatheoretical standpoints. Our mechanization is complete and available on GitHub.
We consider the problem of discovering subgroup $H$ of permutation group $S_{n}$. Unlike the traditional $H$-invariant networks wherein $H$ is assumed to be known, we present a method to discover the underlying subgroup, given that it satisfies certain conditions. Our results show that one could discover any subgroup of type $S_{k} (k \leq n)$ by learning an $S_{n}$-invariant function and a linear transformation. We also prove similar results for cyclic and dihedral subgroups. Finally, we provide a general theorem that can be extended to discover other subgroups of $S_{n}$. We also demonstrate the applicability of our results through numerical experiments on image-digit sum and symmetric polynomial regression tasks.
In this letter, the average mutual information (AMI) of generalized quadrature spatial modulation (GQSM) is first derived for continuous-input continuous-output channels. Our mathematical analysis shows that the calculation error induced by Monte Carlo integration increases exponentially with the signal-to-noise ratio. This nature of GQSM is resolved by deriving a closed-form expression. The derived AMI is compared with other related SM schemes and evaluated for different antenna activation patterns. Our results show that an equiprobable antenna selection method slightly decreases AMI of symbols, while the method significantly improves AMI in total.
A well-known approach in the design of efficient algorithms, called matrix sparsification, approximates a matrix $A$ with a sparse matrix $A'$. Achlioptas and McSherry [2007] initiated a long line of work on spectral-norm sparsification, which aims to guarantee that $\|A'-A\|\leq \epsilon \|A\|$ for error parameter $\epsilon>0$. Various forms of matrix approximation motivate considering this problem with a guarantee according to the Schatten $p$-norm for general $p$, which includes the spectral norm as the special case $p=\infty$. We investigate the relation between fixed but different $p\neq q$, that is, whether sparsification in the Schatten $p$-norm implies (existentially and/or algorithmically) sparsification in the Schatten $q\text{-norm}$ with similar sparsity. An affirmative answer could be tremendously useful, as it will identify which value of $p$ to focus on. Our main finding is a surprising contrast between this question and the analogous case of $\ell_p$-norm sparsification for vectors: For vectors, the answer is affirmative for $p<q$ and negative for $p>q$, but for matrices we answer negatively for almost all sufficiently distinct $p\neq q$. In addition, our explicit constructions may be of independent interest.
Satellite Image Time Series (SITS) representation learning is complex due to high spatiotemporal resolutions, irregular acquisition times, and intricate spatiotemporal interactions. These challenges result in specialized neural network architectures tailored for SITS analysis. The field has witnessed promising results achieved by pioneering researchers, but transferring the latest advances or established paradigms from Computer Vision (CV) to SITS is still highly challenging due to the existing suboptimal representation learning framework. In this paper, we develop a novel perspective of SITS processing as a direct set prediction problem, inspired by the recent trend in adopting query-based transformer decoders to streamline the object detection or image segmentation pipeline. We further propose to decompose the representation learning process of SITS into three explicit steps: collect-update-distribute, which is computationally efficient and suits for irregularly-sampled and asynchronous temporal satellite observations. Facilitated by the unique reformulation, our proposed temporal learning backbone of SITS, initially pre-trained on the resource efficient pixel-set format and then fine-tuned on the downstream dense prediction tasks, has attained new state-of-the-art (SOTA) results on the PASTIS benchmark dataset. Specifically, the clear separation between temporal and spatial components in the semantic/panoptic segmentation pipeline of SITS makes us leverage the latest advances in CV, such as the universal image segmentation architecture, resulting in a noticeable 2.5 points increase in mIoU and 8.8 points increase in PQ, respectively, compared to the best scores reported so far.
We introduce two new classes of measures of information for statistical experiments which generalise and subsume $\phi$-divergences, integral probability metrics, $\mathfrak{N}$-distances (MMD), and $(f,\Gamma)$ divergences between two or more distributions. This enables us to derive a simple geometrical relationship between measures of information and the Bayes risk of a statistical decision problem, thus extending the variational $\phi$-divergence representation to multiple distributions in an entirely symmetric manner. The new families of divergence are closed under the action of Markov operators which yields an information processing equality which is a refinement and generalisation of the classical data processing inequality. This equality gives insight into the significance of the choice of the hypothesis class in classical risk minimization.
Given $n$-vertex simple graphs $X$ and $Y$, the friends-and-strangers graph $\mathsf{FS}(X, Y)$ has as its vertices all $n!$ bijections from $V(X)$ to $V(Y)$, with bijections $\sigma, \tau$ adjacent if and only if they differ on two adjacent elements of $V(X)$ whose mappings are adjacent in $Y$. We consider the setting where $X$ and $Y$ are both edge-subgraphs of $K_{r,r}$: due to a parity obstruction, $\mathsf{FS}(X,Y)$ is always disconnected in this setting. Sharpening a result of Bangachev, we show that if $X$ and $Y$ respectively have minimum degrees $\delta(X)$ and $\delta(Y)$ and they satisfy $\delta(X) + \delta(Y) \geq \lfloor 3r/2 \rfloor + 1$, then $\mathsf{FS}(X,Y)$ has exactly two connected components. This proves that the cutoff for $\mathsf{FS}(X,Y)$ to avoid isolated vertices is equal to the cutoff for $\mathsf{FS}(X,Y)$ to have exactly two connected components. We also consider a probabilistic setup in which we fix $Y$ to be $K_{r,r}$, but randomly generate $X$ by including each edge in $K_{r,r}$ independently with probability $p$. Invoking a result of Zhu, we exhibit a phase transition phenomenon with threshold function $(\log r)/r$: below the threshold, $\mathsf{FS}(X,Y)$ has more than two connected components with high probability, while above the threshold, $\mathsf{FS}(X,Y)$ has exactly two connected components with high probability. Altogether, our results settle a conjecture and completely answer two problems of Alon, Defant, and Kravitz.
An adjacency sketching or implicit labeling scheme for a family $\cal F$ of graphs is a method that defines for any $n$ vertex $G \in \cal F$ an assignment of labels to each vertex in $G$, so that the labels of two vertices tell you whether or not they are adjacent. The goal is to come up with labeling schemes that use as few bits as possible to represent the labels. By using randomness when assigning labels, it is sometimes possible to produce adjacency sketches with much smaller label sizes, but this comes at the cost of introducing some probability of error. Both deterministic and randomized labeling schemes have been extensively studied, as they have applications for distributed data structures and deeper connections to universal graphs and communication complexity. The main question of interest is which graph families have schemes using short labels, usually $O(\log n)$ in the deterministic case or constant for randomized sketches. In this work we consider the resilience of probabilistic adjacency sketches against an adversary making adaptive queries to the labels. This differs from the previously analyzed probabilistic setting which is ``one shot". We show that in the adaptive adversarial case the size of the labels is tightly related to the maximal degree of the graphs in $\cal F$. This results in a stronger characterization compared to what is known in the non-adversarial setting. In more detail, we construct sketches that fail with probability $\varepsilon$ for graphs with maximal degree $d$ using $2d\log (1/\varepsilon)$ bit labels and show that this is roughly the best that can be done for any specific graph of maximal degree $d$, e.g.\ a $d$-ary tree.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.