亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent research endeavors have shown that combining neural radiance fields (NeRFs) with pre-trained diffusion models holds great potential for text-to-3D generation.However, a hurdle is that they often encounter guidance collapse when rendering complex scenes from multi-object texts. Because the text-to-image diffusion models are inherently unconstrained, making them less competent to accurately associate object semantics with specific 3D structures. To address this issue, we propose a novel framework, dubbed CompoNeRF, that explicitly incorporates an editable 3D scene layout to provide effective guidance at the single object (i.e., local) and whole scene (i.e., global) levels. Firstly, we interpret the multi-object text as an editable 3D scene layout containing multiple local NeRFs associated with the object-specific 3D box coordinates and text prompt, which can be easily collected from users. Then, we introduce a global MLP to calibrate the compositional latent features from local NeRFs, which surprisingly improves the view consistency across different local NeRFs. Lastly, we apply the text guidance on global and local levels through their corresponding views to avoid guidance ambiguity. This way, our CompoNeRF allows for flexible scene editing and re-composition of trained local NeRFs into a new scene by manipulating the 3D layout or text prompt. Leveraging the open-source Stable Diffusion model, our CompoNeRF can generate faithful and editable text-to-3D results while opening a potential direction for text-guided multi-object composition via the editable 3D scene layout.

相關內容

Since adversarial examples appeared and showed the catastrophic degradation they brought to DNN, many adversarial defense methods have been devised, among which adversarial training is considered the most effective. However, a recent work showed the inequality phenomena in $l_{\infty}$-adversarial training and revealed that the $l_{\infty}$-adversarially trained model is vulnerable when a few important pixels are perturbed by i.i.d. noise or occluded. In this paper, we propose a simple yet effective method called Input Gradient Distillation to release the inequality phenomena in $l_{\infty}$-adversarial training. Experiments show that while preserving the model's adversarial robustness, Input Gradient Distillation improves the model's robustness to i.i.d. noise and occlusion. Moreover, we formally explain why the equality of the model's saliency map can improve the model's robustness to i.i.d. noise or occlusion. Github://github.com/fhdnskfbeuv/Inuput-Gradient-Distillation

Robotic systems need advanced mobility capabilities to operate in complex, three-dimensional environments designed for human use, e.g., multi-level buildings. Incorporating some level of autonomy enables robots to operate robustly, reliably, and efficiently in such complex environments, e.g., automatically "returning home" if communication between an operator and robot is lost during deployment. This work presents a novel method that enables mobile robots to robustly operate in multi-level environments by making it possible to autonomously locate and climb a range of different staircases. We present results wherein a wheeled robot works together with a quadrupedal system to quickly detect different staircases and reliably climb them. The performance of this novel staircase detection algorithm that is able to run on the heterogeneous platforms is compared to the current state-of-the-art detection algorithm. We show that our approach significantly increases the accuracy and speed at which detections occur.

Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario.

Foundation models have made significant strides in 2D and language tasks such as image segmentation, object detection, and visual-language understanding. Nevertheless, their potential to enhance 3D scene representation learning remains largely untapped due to the domain gap. In this paper, we propose an innovative methodology Bridge3D to address this gap, pre-training 3D models using features, semantic masks, and captions sourced from foundation models. Specifically, our approach utilizes semantic masks from these models to guide the masking and reconstruction process in the masked autoencoder. This strategy enables the network to concentrate more on foreground objects, thereby enhancing 3D representation learning. Additionally, we bridge the 3D-text gap at the scene level by harnessing image captioning foundation models. To further facilitate knowledge distillation from well-learned 2D and text representations to the 3D model, we introduce a novel method that employs foundation models to generate highly accurate object-level masks and semantic text information at the object level. Our approach notably outshines state-of-the-art methods in 3D object detection and semantic segmentation tasks. For instance, on the ScanNet dataset, our method surpasses the previous state-of-the-art method, PiMAE, by a significant margin of 5.3%.

Neural Radiance Fields (NeRFs) are a very recent and very popular approach for the problems of novel view synthesis and 3D reconstruction. A popular scene representation used by NeRFs is to combine a uniform, voxel-based subdivision of the scene with an MLP. Based on the observation that a (sparse) point cloud of the scene is often available, this paper proposes to use an adaptive representation based on tetrahedra obtained by the Delaunay triangulation instead of the uniform subdivision or point-based representations. We show that such a representation enables efficient training and leads to state-of-the-art results. Our approach elegantly combines concepts from 3D geometry processing, triangle-based rendering, and modern neural radiance fields. Compared to voxel-based representations, ours provides more detail around parts of the scene likely to be close to the surface. Compared to point-based representations, our approach achieves better performance.

With the progress of 3D human pose and shape estimation, state-of-the-art methods can either be robust to occlusions or obtain pixel-aligned accuracy in non-occlusion cases. However, they cannot obtain robustness and mesh-image alignment at the same time. In this work, we present NIKI (Neural Inverse Kinematics with Invertible Neural Network), which models bi-directional errors to improve the robustness to occlusions and obtain pixel-aligned accuracy. NIKI can learn from both the forward and inverse processes with invertible networks. In the inverse process, the model separates the error from the plausible 3D pose manifold for a robust 3D human pose estimation. In the forward process, we enforce the zero-error boundary conditions to improve the sensitivity to reliable joint positions for better mesh-image alignment. Furthermore, NIKI emulates the analytical inverse kinematics algorithms with the twist-and-swing decomposition for better interpretability. Experiments on standard and occlusion-specific benchmarks demonstrate the effectiveness of NIKI, where we exhibit robust and well-aligned results simultaneously. Code is available at //github.com/Jeff-sjtu/NIKI

We propose an end-to-end deep-learning approach for automatic rigging and retargeting of 3D models of human faces in the wild. Our approach, called Neural Face Rigging (NFR), holds three key properties: (i) NFR's expression space maintains human-interpretable editing parameters for artistic controls; (ii) NFR is readily applicable to arbitrary facial meshes with different connectivity and expressions; (iii) NFR can encode and produce fine-grained details of complex expressions performed by arbitrary subjects. To the best of our knowledge, NFR is the first approach to provide realistic and controllable deformations of in-the-wild facial meshes, without the manual creation of blendshapes or correspondence. We design a deformation autoencoder and train it through a multi-dataset training scheme, which benefits from the unique advantages of two data sources: a linear 3DMM with interpretable control parameters as in FACS, and 4D captures of real faces with fine-grained details. Through various experiments, we show NFR's ability to automatically produce realistic and accurate facial deformations across a wide range of existing datasets as well as noisy facial scans in-the-wild, while providing artist-controlled, editable parameters.

Neural Radiance Fields (NeRFs) offer versatility and robustness in map representations for Simultaneous Localization and Mapping (SLAM) tasks. This paper extends NICE-SLAM, a recent state-of-the-art NeRF-based SLAM algorithm capable of producing high quality NeRF maps. However, depending on the hardware used, the required number of iterations to produce these maps often makes NICE-SLAM run at less than real time. Additionally, the estimated trajectories fail to be competitive with classical SLAM approaches. Finally, NICE-SLAM requires a grid covering the considered environment to be defined prior to runtime, making it difficult to extend into previously unseen scenes. This paper seeks to make NICE-SLAM more open-world-capable by improving the robustness and tracking accuracy, and generalizing the map representation to handle unconstrained environments. This is done by improving measurement uncertainty handling, incorporating motion information, and modelling the map as having an explicit foreground and background. It is shown that these changes are able to improve tracking accuracy by 85% to 97% depending on the available resources, while also improving mapping in environments with visual information extending outside of the predefined grid.

Automatically generating high-quality real world 3D scenes is of enormous interest for applications such as virtual reality and robotics simulation. Towards this goal, we introduce NeuralField-LDM, a generative model capable of synthesizing complex 3D environments. We leverage Latent Diffusion Models that have been successfully utilized for efficient high-quality 2D content creation. We first train a scene auto-encoder to express a set of image and pose pairs as a neural field, represented as density and feature voxel grids that can be projected to produce novel views of the scene. To further compress this representation, we train a latent-autoencoder that maps the voxel grids to a set of latent representations. A hierarchical diffusion model is then fit to the latents to complete the scene generation pipeline. We achieve a substantial improvement over existing state-of-the-art scene generation models. Additionally, we show how NeuralField-LDM can be used for a variety of 3D content creation applications, including conditional scene generation, scene inpainting and scene style manipulation.

Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.

北京阿比特科技有限公司