We consider the feedback capacity of a MIMO channel whose channel output is given by a linear state-space model driven by the channel inputs and a Gaussian process. The generality of our state-space model subsumes all previous studied models such as additive channels with colored Gaussian noise, and channels with an arbitrary dependence on previous channel inputs or outputs. The main result is a computable feedback capacity expression that is given as a convex optimization problem subject to a detectability condition. We demonstrate the capacity result on the auto-regressive Gaussian noise channel, where we show that even a single time-instance delay in the feedback reduces the feedback capacity significantly in the stationary regime. On the other hand, for large regression parameters (in the non-stationary regime), the feedback capacity can be approached with delayed feedback. Finally, we show that the detectability condition is satisfied for scalar models and conjecture that it is true for MIMO models.
This paper is devoted to the robust approximation with a variational phase field approach of multiphase mean curvature flows with possibly highly contrasted mobilities. The case of harmonically additive mobilities has been addressed recently using a suitable metric to define the gradient flow of the phase field approximate energy. We generalize this approach to arbitrary nonnegative mobilities using a decomposition as sums of harmonically additive mobilities. We establish the consistency of the resulting method by analyzing the sharp interface limit of the flow: a formal expansion of the phase field shows that the method is of second order. We propose a simple numerical scheme to approximate the solutions to our new model. Finally, we present some numerical experiments in dimensions 2 and 3 that illustrate the interest and effectiveness of our approach, in particular for approximating flows in which the mobility of some phases is zero.
The use of neural networks has been very successful in a wide variety of applications. However, it has recently been observed that it is difficult to generalize the performance of neural networks under the condition of distributional shift. Several efforts have been made to identify potential out-of-distribution inputs. Although existing literature has made significant progress with regard to images and textual data, finance has been overlooked. The aim of this paper is to investigate the distribution shift in the credit scoring problem, one of the most important applications of finance. For the potential distribution shift problem, we propose a novel two-stage model. Using the out-of-distribution detection method, data is first separated into confident and unconfident sets. As a second step, we utilize the domain knowledge with a mean-variance optimization in order to provide reliable bounds for unconfident samples. Using empirical results, we demonstrate that our model offers reliable predictions for the vast majority of datasets. It is only a small portion of the dataset that is inherently difficult to judge, and we leave them to the judgment of human beings. Based on the two-stage model, highly confident predictions have been made and potential risks associated with the model have been significantly reduced.
The use of 1-bit analog-to-digital converters (ADCs) is seen as a promising approach to significantly reduce the power consumption and hardware cost of multiple-input multiple-output (MIMO) receivers. However, the nonlinear distortion due to 1-bit quantization fundamentally changes the optimal communication strategy and also imposes a capacity penalty to the system. In this paper, the capacity of a Gaussian MIMO channel in which the antenna outputs are processed by an analog linear combiner and then quantized by a set of zero threshold ADCs is studied. A new capacity upper bound for the zero threshold case is established that is tighter than the bounds available in the literature. In addition, we propose an achievability scheme which configures the analog combiner to create parallel Gaussian channels with phase quantization at the output. Under this class of analog combiners, an algorithm is presented that identifies the analog combiner and input distribution that maximize the achievable rate. Numerical results are provided showing that the rate of the achievability scheme is tight in the low signal-to-noise ratio (SNR) regime. Finally, a new 1-bit MIMO receiver architecture which employs analog temporal and spatial processing is proposed. The proposed receiver attains the capacity in the high SNR regime.
Proximity-based contact tracing relies on mobile-device interaction to estimate the spread of disease. ShareTrace is one such approach that improves the efficacy of tracking disease spread by considering direct and indirect forms of contact. In this work, we utilize the actor model to provide an efficient and scalable formulation of ShareTrace with asynchronous, concurrent message passing on a temporal contact network. We also introduce message reachability, an extension of temporal reachability that accounts for network topology and message-passing semantics. Our evaluation on both synthetic and real-world contact networks indicates that correct parameter values optimize for algorithmic accuracy and efficiency. In addition, we demonstrate that message reachability can accurately estimate the risk a user poses to their contacts.
In data science, vector autoregression (VAR) models are popular in modeling multivariate time series in the environmental sciences and other applications. However, these models are computationally complex with the number of parameters scaling quadratically with the number of time series. In this work, we propose a so-called neighborhood vector autoregression (NVAR) model to efficiently analyze large-dimensional multivariate time series. We assume that the time series have underlying neighborhood relationships, e.g., spatial or network, among them based on the inherent setting of the problem. When this neighborhood information is available or can be summarized using a distance matrix, we demonstrate that our proposed NVAR method provides a computationally efficient and theoretically sound estimation of model parameters. The performance of the proposed method is compared with other existing approaches in both simulation studies and a real application of stream nitrogen study.
Implicit feedback is frequently used for developing personalized recommendation services due to its ubiquity and accessibility in real-world systems. In order to effectively utilize such information, most research adopts the pairwise ranking method on constructed training triplets (user, positive item, negative item) and aims to distinguish between positive items and negative items for each user. However, most of these methods treat all the training triplets equally, which ignores the subtle difference between different positive or negative items. On the other hand, even though some other works make use of the auxiliary information (e.g., dwell time) of user behaviors to capture this subtle difference, such auxiliary information is hard to obtain. To mitigate the aforementioned problems, we propose a novel training framework named Triplet Importance Learning (TIL), which adaptively learns the importance score of training triplets. We devise two strategies for the importance score generation and formulate the whole procedure as a bilevel optimization, which does not require any rule-based design. We integrate the proposed training procedure with several Matrix Factorization (MF)- and Graph Neural Network (GNN)-based recommendation models, demonstrating the compatibility of our framework. Via a comparison using three real-world datasets with many state-of-the-art methods, we show that our proposed method outperforms the best existing models by 3-21\% in terms of Recall@k for the top-k recommendation.
Relocation of haptic feedback from the fingertips to the wrist has been considered as a way to enable haptic interaction with mixed reality virtual environments while leaving the fingers free for other tasks. We present a pair of wrist-worn tactile haptic devices and a virtual environment to study how various mappings between fingers and tactors affect task performance. The haptic feedback rendered to the wrist reflects the interaction forces occurring between a virtual object and virtual avatars controlled by the index finger and thumb. We performed a user study comparing four different finger-to-tactor haptic feedback mappings and one no-feedback condition as a control. We evaluated users' ability to perform a simple pick-and-place task via the metrics of task completion time, path length of the fingers and virtual cube, and magnitudes of normal and shear forces at the fingertips. We found that multiple mappings were effective, and there was a greater impact when visual cues were limited. We discuss the limitations of our approach and describe next steps toward multi-degree-of-freedom haptic rendering for wrist-worn devices to improve task performance in virtual environments.
Much of the literature on optimal design of bandit algorithms is based on minimization of expected regret. It is well known that designs that are optimal over certain exponential families can achieve expected regret that grows logarithmically in the number of arm plays, at a rate governed by the Lai-Robbins lower bound. In this paper, we show that when one uses such optimized designs, the regret distribution of the associated algorithms necessarily has a very heavy tail, specifically, that of a truncated Cauchy distribution. Furthermore, for $p>1$, the $p$'th moment of the regret distribution grows much faster than poly-logarithmically, in particular as a power of the total number of arm plays. We show that optimized UCB bandit designs are also fragile in an additional sense, namely when the problem is even slightly mis-specified, the regret can grow much faster than the conventional theory suggests. Our arguments are based on standard change-of-measure ideas, and indicate that the most likely way that regret becomes larger than expected is when the optimal arm returns below-average rewards in the first few arm plays, thereby causing the algorithm to believe that the arm is sub-optimal. To alleviate the fragility issues exposed, we show that UCB algorithms can be modified so as to ensure a desired degree of robustness to mis-specification. In doing so, we also provide a sharp trade-off between the amount of UCB exploration and the tail exponent of the resulting regret distribution.
Classical results in general equilibrium theory assume divisible goods and convex preferences of market participants. In many real-world markets, participants have non-convex preferences and the allocation problem needs to consider complex constraints. Electricity markets are a prime example. In such markets, Walrasian prices are impossible, and heuristic pricing rules based on the dual of the relaxed allocation problem are used in practice. However, these rules have been criticized for high side-payments and inadequate congestion signals. We show that existing pricing heuristics optimize specific design goals that can be conflicting. The trade-offs can be substantial, and we establish that the design of pricing rules is fundamentally a multi-objective optimization problem addressing different incentives. In addition to traditional multi-objective optimization techniques using weighing of individual objectives, we introduce a novel parameter-free pricing rule that minimizes incentives for market participants to deviate locally. Our findings show how the new pricing rule capitalizes on the upsides of existing pricing rules under scrutiny today. It leads to prices that incur low make-whole payments while providing adequate congestion signals and low lost opportunity costs. Our suggested pricing rule does not require weighing of objectives, it is computationally scalable, and balances trade-offs in a principled manner, addressing an important policy issue in electricity markets.
We consider a potential outcomes model in which interference may be present between any two units but the extent of interference diminishes with spatial distance. The causal estimand is the global average treatment effect, which compares outcomes under the counterfactuals that all or no units are treated. We study a class of designs in which space is partitioned into clusters that are randomized into treatment and control. For each design, we estimate the treatment effect using a Horvitz-Thompson estimator that compares the average outcomes of units with all or no neighbors treated, where the neighborhood radius is of the same order as the cluster size dictated by the design. We derive the estimator's rate of convergence as a function of the design and degree of interference and use this to obtain estimator-design pairs that achieve near-optimal rates of convergence under relatively minimal assumptions on interference. We prove that the estimators are asymptotically normal and provide a variance estimator. For practical implementation of the designs, we suggest partitioning space using clustering algorithms.