As control-flow protection gets widely deployed, it is difficult for attackers to corrupt control-data and achieve control-flow hijacking. Instead, data-oriented attacks, which manipulate non-control data, have been demonstrated to be feasible and powerful. In data-oriented attacks, a fundamental step is to identify non-control, security-critical data. However, critical data identification processes are not scalable in previous works, because they mainly rely on tedious human efforts to identify critical data. To address this issue, we propose a novel approach that combines traditional program analysis with deep learning. At a higher level, by examining how analysts identify critical data, we first propose dynamic analysis algorithms to identify the program semantics (and features) that are correlated with the impact of a critical data. Then, motivated by the unique challenges in the critical data identification task, we formalize the distinguishing features and use customized program dependence graphs (PDG) to embed the features. Different from previous works using deep learning to learn basic program semantics, this paper adopts a special neural network architecture that can capture the long dependency paths (in the PDG), through which a critical variable propagates its impact. We have implemented a fully-automatic toolchain and conducted comprehensive evaluations. According to the evaluations, our model can achieve 90% accuracy. The toolchain uncovers 80 potential critical variables in Google FuzzBench. In addition, we demonstrate the harmfulness of the exploits using the identified critical variables by simulating 7 data-oriented attacks through GDB.
Change detection is a fundamental task in computer vision that processes a bi-temporal image pair to differentiate between semantically altered and unaltered regions. Large language models (LLMs) have been utilized in various domains for their exceptional feature extraction capabilities and have shown promise in numerous downstream applications. In this study, we harness the power of a pre-trained LLM, extracting feature maps from extensive datasets, and employ an auxiliary network to detect changes. Unlike existing LLM-based change detection methods that solely focus on deriving high-quality feature maps, our approach emphasizes the manipulation of these feature maps to enhance semantic relevance.
Creating effective and reliable task-oriented dialog systems (ToDSs) is challenging, not only because of the complex structure of these systems, but also due to the scarcity of training data, especially when several modules need to be trained separately, each one with its own input/output training examples. Data augmentation (DA), whereby synthetic training examples are added to the training data, has been successful in other NLP systems, but has not been explored as extensively in ToDSs. We empirically evaluate the effectiveness of DA methods in an end-to-end ToDS setting, where a single system is trained to handle all processing stages, from user inputs to system outputs. We experiment with two ToDSs (UBAR, GALAXY) on two datasets (MultiWOZ, KVRET). We consider three types of DA methods (word-level, sentence-level, dialog-level), comparing eight DA methods that have shown promising results in ToDSs and other NLP systems. We show that all DA methods considered are beneficial, and we highlight the best ones, also providing advice to practitioners. We also introduce a more challenging few-shot cross-domain ToDS setting, reaching similar conclusions.
With the exponential growth of data and evolving use cases, petabyte-scale OLAP data platforms are increasingly adopting a model that decouples compute from storage. This shift, evident in organizations like Uber and Meta, introduces operational challenges including massive, read-heavy I/O traffic with potential throttling, as well as skewed and fragmented data access patterns. Addressing these challenges, this paper introduces the Alluxio local (edge) cache, a highly effective architectural optimization tailored for such environments. This embeddable cache, optimized for petabyte-scale data analytics, leverages local SSD resources to alleviate network I/O and API call pressures, significantly improving data transfer efficiency. Integrated with OLAP systems like Presto and storage services like HDFS, the Alluxio local cache has demonstrated its effectiveness in handling large-scale, enterprise-grade workloads over three years of deployment at Uber and Meta. We share insights and operational experiences in implementing these optimizations, providing valuable perspectives on managing modern, massive-scale OLAP workloads.
Modeling open hole failure of composites is a complex task, consisting in a highly nonlinear response with interacting failure modes. Numerical modeling of this phenomenon has traditionally been based on the finite element method, but requires to tradeoff between high fidelity and computational cost. To mitigate this shortcoming, recent work has leveraged machine learning to predict the strength of open hole composite specimens. Here, we also propose using data-based models but to tackle open hole composite failure from a classification point of view. More specifically, we show how to train surrogate models to learn the ultimate failure envelope of an open hole composite plate under in-plane loading. To achieve this, we solve the classification problem via support vector machine (SVM) and test different classifiers by changing the SVM kernel function. The flexibility of kernel-based SVM also allows us to integrate the recently developed quantum kernels in our algorithm and compare them with the standard radial basis function (RBF) kernel. Finally, thanks to kernel-target alignment optimization, we tune the free parameters of all kernels to best separate safe and failure-inducing loading states. The results show classification accuracies higher than 90% for RBF, especially after alignment, followed closely by the quantum kernel classifiers.
Cybersecurity breaches in digital substations can pose significant challenges to the stability and reliability of power system operations. To address these challenges, defense and mitigation techniques are required. Identifying and detecting anomalies in information and communication technology (ICT) is crucial to ensure secure device interactions within digital substations. This paper proposes a task-oriented dialogue (ToD) system for anomaly detection (AD) in datasets of multicast messages e.g., generic object oriented substation event (GOOSE) and sampled value (SV) in digital substations using large language models (LLMs). This model has a lower potential error and better scalability and adaptability than a process that considers the cybersecurity guidelines recommended by humans, known as the human-in-the-loop (HITL) process. Also, this methodology significantly reduces the effort required when addressing new cyber threats or anomalies compared with machine learning (ML) techniques, since it leaves the models complexity and precision unaffected and offers a faster implementation. These findings present a comparative assessment, conducted utilizing standard and advanced performance evaluation metrics for the proposed AD framework and the HITL process. To generate and extract datasets of IEC 61850 communications, a hardware-in-the-loop (HIL) testbed was employed.
The burgeoning field of text-based video generation (T2V) has reignited significant interest in the research of controllable video editing. Although pre-trained T2V-based editing models have achieved efficient editing capabilities, current works are still plagued by two major challenges. Firstly, the inherent limitations of T2V models lead to content inconsistencies and motion discontinuities between frames. Secondly, the notorious issue of over-editing significantly disrupts areas that are intended to remain unaltered. To address these challenges, our work aims to explore a robust video-based editing paradigm based on score distillation. Specifically, we propose an Adaptive Sliding Score Distillation strategy, which not only enhances the stability of T2V supervision but also incorporates both global and local video guidance to mitigate the impact of generation errors. Additionally, we modify the self-attention layers during the editing process to further preserve the key features of the original video. Extensive experiments demonstrate that these strategies enable us to effectively address the aforementioned challenges, achieving superior editing performance compared to existing state-of-the-art methods.
The ability to learn compact, high-quality, and easy-to-optimize representations for visual data is paramount to many applications such as novel view synthesis and 3D reconstruction. Recent work has shown substantial success in using tensor networks to design such compact and high-quality representations. However, the ability to optimize tensor-based representations, and in particular, the highly compact tensor train representation, is still lacking. This has prevented practitioners from deploying the full potential of tensor networks for visual data. To this end, we propose 'Prolongation Upsampling Tensor Train (PuTT)', a novel method for learning tensor train representations in a coarse-to-fine manner. Our method involves the prolonging or `upsampling' of a learned tensor train representation, creating a sequence of 'coarse-to-fine' tensor trains that are incrementally refined. We evaluate our representation along three axes: (1). compression, (2). denoising capability, and (3). image completion capability. To assess these axes, we consider the tasks of image fitting, 3D fitting, and novel view synthesis, where our method shows an improved performance compared to state-of-the-art tensor-based methods. For full results see our project webpage: //sebulo.github.io/PuTT_website/
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.